亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Radiation therapy is a primary and effective NasoPharyngeal Carcinoma (NPC) treatment strategy. The precise delineation of Gross Tumor Volumes (GTVs) and Organs-At-Risk (OARs) is crucial in radiation treatment, directly impacting patient prognosis. Previously, the delineation of GTVs and OARs was performed by experienced radiation oncologists. Recently, deep learning has achieved promising results in many medical image segmentation tasks. However, for NPC OARs and GTVs segmentation, few public datasets are available for model development and evaluation. To alleviate this problem, the SegRap2023 challenge was organized in conjunction with MICCAI2023 and presented a large-scale benchmark for OAR and GTV segmentation with 400 Computed Tomography (CT) scans from 200 NPC patients, each with a pair of pre-aligned non-contrast and contrast-enhanced CT scans. The challenge's goal was to segment 45 OARs and 2 GTVs from the paired CT scans. In this paper, we detail the challenge and analyze the solutions of all participants. The average Dice similarity coefficient scores for all submissions ranged from 76.68\% to 86.70\%, and 70.42\% to 73.44\% for OARs and GTVs, respectively. We conclude that the segmentation of large-size OARs is well-addressed, and more efforts are needed for GTVs and small-size or thin-structure OARs. The benchmark will remain publicly available here: //segrap2023.grand-challenge.org

相關內容

NPC:IFIP International Conference on Network and Parallel Computing。 Explanation:網(wang)絡與并行計算(suan)國際(ji)會議。 Publisher:Springer。 SIT:

Recently, increasing attention has been focused drawn on to improve the ability of Large Language Models (LLMs) to perform complex reasoning. However, previous methods, such as Chain-of-Thought and Self-Consistency, mainly follow Direct Reasoning (DR) frameworks, so they will meet difficulty in solving numerous real-world tasks which can hardly be solved via DR. Therefore, to strengthen the reasoning power of LLMs, this paper proposes a novel Indirect Reasoning (IR) method that employs the logic of contrapositives and contradictions to tackle IR tasks such as factual reasoning and mathematic proof. Specifically, our methodology comprises two steps. Firstly, we leverage the logical equivalence of contrapositive to augment the data and rules to enhance the comprehensibility of LLMs. Secondly, we design a set of prompt templates to trigger LLMs to conduct IR based on proof by contradiction that is logically equivalent to the original DR process. Our IR method is simple yet effective and can be straightforwardly integrated with existing DR methods to further boost the reasoning abilities of LLMs. The experimental results on popular LLMs, such as GPT-3.5-turbo and Gemini-pro, show that our IR method enhances the overall accuracy of factual reasoning by 27.33% and mathematical proof by 31.43%, when compared with traditional DR methods. Moreover, the methods combining IR and DR significantly outperform the methods solely using IR or DR, further demonstrating the effectiveness of our strategy.

Prostate cancer diagnosis continues to encounter challenges, often due to imprecise needle placement in standard biopsies. Several control strategies have been developed to compensate for needle tip prediction inaccuracies, however none were compared against each other, and it is unclear whether any of them can be safely and universally applied in clinical settings. This paper compares the performance of two resolved-rate controllers, derived from a mechanics-based and a data-driven approach, for bevel-tip needle control using needle shape manipulation through a template. We demonstrate for a simulated 12-core biopsy procedure under model parameter uncertainty that the mechanics-based controller can better reach desired targets when only the final goal configuration is presented even with uncertainty on model parameters estimation, and that providing a feasible needle path is crucial in ensuring safe surgical outcomes when either controller is used for needle shape manipulation.

Early detection and assessment of polyps play a crucial role in the prevention and treatment of colorectal cancer (CRC). Polyp segmentation provides an effective solution to assist clinicians in accurately locating and segmenting polyp regions. In the past, people often relied on manually extracted lower-level features such as color, texture, and shape, which often had issues capturing global context and lacked robustness to complex scenarios. With the advent of deep learning, more and more outstanding medical image segmentation algorithms based on deep learning networks have emerged, making significant progress in this field. This paper provides a comprehensive review of polyp segmentation algorithms. We first review some traditional algorithms based on manually extracted features and deep segmentation algorithms, then detail benchmark datasets related to the topic. Specifically, we carry out a comprehensive evaluation of recent deep learning models and results based on polyp sizes, considering the pain points of research topics and differences in network structures. Finally, we discuss the challenges of polyp segmentation and future trends in this field. The models, benchmark datasets, and source code links we collected are all published at //github.com/taozh2017/Awesome-Polyp-Segmentation.

Graph Collaborative Filtering (GCF), one of the most widely adopted recommendation system methods, effectively captures intricate relationships between user and item interactions. Graph Contrastive Learning (GCL) based GCF has gained significant attention as it leverages self-supervised techniques to extract valuable signals from real-world scenarios. However, many methods usually learn the instances of discrimination tasks that involve the construction of contrastive pairs through random sampling. GCL approaches suffer from sampling bias issues, where the negatives might have a semantic structure similar to that of the positives, thus leading to a loss of effective feature representation. To address these problems, we present the \underline{Proto}typical contrastive learning through \underline{A}lignment and \underline{U}niformity for recommendation, which is called \textbf{ProtoAU}. Specifically, we first propose prototypes (cluster centroids) as a latent space to ensure consistency across different augmentations from the origin graph, aiming to eliminate the need for random sampling of contrastive pairs. Furthermore, the absence of explicit negatives means that directly optimizing the consistency loss between instance and prototype could easily result in dimensional collapse issues. Therefore, we propose aligning and maintaining uniformity in the prototypes of users and items as optimization objectives to prevent falling into trivial solutions. Finally, we conduct extensive experiments on four datasets and evaluate their performance on the task of link prediction. Experimental results demonstrate that the proposed ProtoAU outperforms other representative methods. The source codes of our proposed ProtoAU are available at \url{//github.com/oceanlvr/ProtoAU}.

Many methods for estimating conditional average treatment effects (CATEs) can be expressed as weighted pseudo-outcome regressions (PORs). Previous comparisons of POR techniques have paid careful attention to the choice of pseudo-outcome transformation. However, we argue that the dominant driver of performance is actually the choice of weights. For example, we point out that R-Learning implicitly performs a POR with inverse-variance weights (IVWs). In the CATE setting, IVWs mitigate the instability associated with inverse-propensity weights, and lead to convenient simplifications of bias terms. We demonstrate the superior performance of IVWs in simulations, and derive convergence rates for IVWs that are, to our knowledge, the fastest yet shown without assuming knowledge of the covariate distribution.

The development of Courses of Action (COAs) in military operations is traditionally a time-consuming and intricate process. Addressing this challenge, this study introduces COA-GPT, a novel algorithm employing Large Language Models (LLMs) for rapid and efficient generation of valid COAs. COA-GPT incorporates military doctrine and domain expertise to LLMs through in-context learning, allowing commanders to input mission information - in both text and image formats - and receive strategically aligned COAs for review and approval. Uniquely, COA-GPT not only accelerates COA development, producing initial COAs within seconds, but also facilitates real-time refinement based on commander feedback. This work evaluates COA-GPT in a military-relevant scenario within a militarized version of the StarCraft II game, comparing its performance against state-of-the-art reinforcement learning algorithms. Our results demonstrate COA-GPT's superiority in generating strategically sound COAs more swiftly, with added benefits of enhanced adaptability and alignment with commander intentions. COA-GPT's capability to rapidly adapt and update COAs during missions presents a transformative potential for military planning, particularly in addressing planning discrepancies and capitalizing on emergent windows of opportunities.

In the high-stakes realm of healthcare, ensuring fairness in predictive models is crucial. Electronic Health Records (EHRs) have become integral to medical decision-making, yet existing methods for enhancing model fairness restrict themselves to unimodal data and fail to address the multifaceted social biases intertwined with demographic factors in EHRs. To mitigate these biases, we present FairEHR-CLP: a general framework for Fairness-aware Clinical Predictions with Contrastive Learning in EHRs. FairEHR-CLP operates through a two-stage process, utilizing patient demographics, longitudinal data, and clinical notes. First, synthetic counterparts are generated for each patient, allowing for diverse demographic identities while preserving essential health information. Second, fairness-aware predictions employ contrastive learning to align patient representations across sensitive attributes, jointly optimized with an MLP classifier with a softmax layer for clinical classification tasks. Acknowledging the unique challenges in EHRs, such as varying group sizes and class imbalance, we introduce a novel fairness metric to effectively measure error rate disparities across subgroups. Extensive experiments on three diverse EHR datasets on three tasks demonstrate the effectiveness of FairEHR-CLP in terms of fairness and utility compared with competitive baselines. FairEHR-CLP represents an advancement towards ensuring both accuracy and equity in predictive healthcare models.

Medical image segmentation is a fundamental and critical step in many image-guided clinical approaches. Recent success of deep learning-based segmentation methods usually relies on a large amount of labeled data, which is particularly difficult and costly to obtain especially in the medical imaging domain where only experts can provide reliable and accurate annotations. Semi-supervised learning has emerged as an appealing strategy and been widely applied to medical image segmentation tasks to train deep models with limited annotations. In this paper, we present a comprehensive review of recently proposed semi-supervised learning methods for medical image segmentation and summarized both the technical novelties and empirical results. Furthermore, we analyze and discuss the limitations and several unsolved problems of existing approaches. We hope this review could inspire the research community to explore solutions for this challenge and further promote the developments in medical image segmentation field.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司