亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep Reinforcement Learning has shown significant progress in extracting useful representations from high-dimensional inputs albeit using hand-crafted auxiliary tasks and pseudo rewards. Automatically learning such representations in an object-centric manner geared towards control and fast adaptation remains an open research problem. In this paper, we introduce a method that tries to discover meaningful features from objects, translating them to temporally coherent "question" functions and leveraging the subsequent learned general value functions for control. We compare our approach with state-of-the-art techniques alongside other ablations and show competitive performance in both stationary and non-stationary settings. Finally, we also investigate the discovered general value functions and through qualitative analysis show that the learned representations are not only interpretable but also, centered around objects that are invariant to changes across tasks facilitating fast adaptation.

相關內容

Multi-agent reinforcement learning (MARL) addresses sequential decision-making problems with multiple agents, where each agent optimizes its own objective. In many real-world instances, the agents may not only want to optimize their objectives, but also ensure safe behavior. For example, in traffic routing, each car (agent) aims to reach its destination quickly (objective) while avoiding collisions (safety). Constrained Markov Games (CMGs) are a natural formalism for safe MARL problems, though generally intractable. In this work, we introduce and study Constrained Markov Potential Games (CMPGs), an important class of CMGs. We first show that a Nash policy for CMPGs can be found via constrained optimization. One tempting approach is to solve it by Lagrangian-based primal-dual methods. As we show, in contrast to the single-agent setting, however, CMPGs do not satisfy strong duality, rendering such approaches inapplicable and potentially unsafe. To solve the CMPG problem, we propose our algorithm Coordinate-Ascent for CMPGs (CA-CMPG), which provably converges to a Nash policy in tabular, finite-horizon CMPGs. Furthermore, we provide the first sample complexity bounds for learning Nash policies in unknown CMPGs, and, which under additional assumptions, guarantee safe exploration.

Knowledge tracing plays a pivotal role in intelligent tutoring systems. This task aims to predict the probability of students answering correctly to specific questions. To do so, knowledge tracing systems should trace the knowledge state of the students by utilizing their problem-solving history and knowledge about the problems. Recent advances in knowledge tracing models have enabled better exploitation of problem solving history. However, knowledge about problems has not been studied, as well compared to students' answering histories. Knowledge tracing algorithms that incorporate knowledge directly are important to settings with limited data or cold starts. Therefore, we consider the problem of utilizing skill-to-skill relation to knowledge tracing. In this work, we introduce expert labeled skill-to-skill relationships. Moreover, we also provide novel methods to construct a knowledge-tracing model to leverage human experts' insight regarding relationships between skills. The results of an extensive experimental analysis show that our method outperformed a baseline Transformer model. Furthermore, we found that the extent of our model's superiority was greater in situations with limited data, which allows a smooth cold start of our model.

Biological vision systems make adaptive use of context to recognize objects in new settings with novel contexts as well as occluded or blurry objects in familiar settings. In this paper, we investigate how vision models adaptively use context for out-of-distribution (OOD) generalization and leverage our analysis results to improve model OOD generalization. First, we formulate two distinct OOD settings where the contexts are either irrelevant (Background-Invariance) or beneficial (Object-Disambiguation), reflecting the diverse contextual challenges faced in biological vision. We then analyze model performance in these two different OOD settings and demonstrate that models that excel in one setting tend to struggle in the other. Notably, prior works on learning causal features improve on one setting but hurt in the other. This underscores the importance of generalizing across both OOD settings, as this ability is crucial for both human cognition and robust AI systems. Next, to better understand the model properties contributing to OOD generalization, we use representational geometry analysis and our own probing methods to examine a population of models, and we discover that those with more factorized representations and appropriate feature weighting are more successful in handling Background-Invariance and Object-Disambiguation tests. We further validate these findings through causal intervention on representation factorization and feature weighting to demonstrate their causal effect on performance. Lastly, we propose new augmentation methods to enhance model generalization. These methods outperform strong baselines, yielding improvements in both in-distribution and OOD tests. In conclusion, to replicate the generalization abilities of biological vision, computer vision models must have factorized object vs. background representations and appropriately weight both kinds of features.

The $1-N$ generalized Stackelberg game (single-leader multi-follower game) is intricately intertwined with the interaction between a leader and followers (hierarchical interaction) and the interaction among followers (simultaneous interaction). However, obtaining the optimal strategy of the leader is generally challenging due to the complex interactions among the leader and followers. Here, we propose a general methodology to find a generalized Stackelberg equilibrium of a $1-N$ generalized Stackelberg game. Specifically, we first provide the conditions where a generalized Stackelberg equilibrium always exists using the variational equilibrium concept. Next, to find an equilibrium in polynomial time, we transformed the $1-N$ generalized Stackelberg game into a $1-1$ Stackelberg game whose Stackelberg equilibrium is identical to that of the original. Finally, we propose an effective computation procedure based on the projected implicit gradient descent algorithm to find a Stackelberg equilibrium of the transformed $1-1$ Stackelberg game. We validate the proposed approaches using the two problems of deriving operating strategies for EV charging stations: (1) the first problem is optimizing the one-time charging price for EV users, in which a platform operator determines the price of electricity and EV users determine the optimal amount of charging for their satisfaction; and (2) the second problem is to determine the spatially varying charging price to optimally balance the demand and supply over every charging station.

Guaranteeing safe behaviour of reinforcement learning (RL) policies poses significant challenges for safety-critical applications, despite RL's generality and scalability. To address this, we propose a new approach to apply verification methods from control theory to learned value functions. By analyzing task structures for safety preservation, we formalize original theorems that establish links between value functions and control barrier functions. Further, we propose novel metrics for verifying value functions in safe control tasks and practical implementation details to improve learning. Our work presents a novel method for certificate learning, which unlocks a diversity of verification techniques from control theory for RL policies, and marks a significant step towards a formal framework for the general, scalable, and verifiable design of RL-based control systems.

Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.

Object detection is a fundamental task in computer vision and image processing. Current deep learning based object detectors have been highly successful with abundant labeled data. But in real life, it is not guaranteed that each object category has enough labeled samples for training. These large object detectors are easy to overfit when the training data is limited. Therefore, it is necessary to introduce few-shot learning and zero-shot learning into object detection, which can be named low-shot object detection together. Low-Shot Object Detection (LSOD) aims to detect objects from a few or even zero labeled data, which can be categorized into few-shot object detection (FSOD) and zero-shot object detection (ZSD), respectively. This paper conducts a comprehensive survey for deep learning based FSOD and ZSD. First, this survey classifies methods for FSOD and ZSD into different categories and discusses the pros and cons of them. Second, this survey reviews dataset settings and evaluation metrics for FSOD and ZSD, then analyzes the performance of different methods on these benchmarks. Finally, this survey discusses future challenges and promising directions for FSOD and ZSD.

Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.

Recently, deep multiagent reinforcement learning (MARL) has become a highly active research area as many real-world problems can be inherently viewed as multiagent systems. A particularly interesting and widely applicable class of problems is the partially observable cooperative multiagent setting, in which a team of agents learns to coordinate their behaviors conditioning on their private observations and commonly shared global reward signals. One natural solution is to resort to the centralized training and decentralized execution paradigm. During centralized training, one key challenge is the multiagent credit assignment: how to allocate the global rewards for individual agent policies for better coordination towards maximizing system-level's benefits. In this paper, we propose a new method called Q-value Path Decomposition (QPD) to decompose the system's global Q-values into individual agents' Q-values. Unlike previous works which restrict the representation relation of the individual Q-values and the global one, we leverage the integrated gradient attribution technique into deep MARL to directly decompose global Q-values along trajectory paths to assign credits for agents. We evaluate QPD on the challenging StarCraft II micromanagement tasks and show that QPD achieves the state-of-the-art performance in both homogeneous and heterogeneous multiagent scenarios compared with existing cooperative MARL algorithms.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

北京阿比特科技有限公司