亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A finite element discretization is developed for the Cai-Hu model, describing the formation of biological networks. The model consists of a non linear elliptic equation for the pressure $p$ and a non linear reaction-diffusion equation for the conductivity tensor $\mathbb{C}$. The problem requires high resolution due to the presence of multiple scales, the stiffness in all its components and the non linearities. We propose a low order finite element discretization in space coupled with a semi-implicit time advancing scheme. The code is validated with several numerical tests performed with various choices for the parameters involved in the system. In absence of the exact solution, we apply Richardson extrapolation technique to estimate the order of the method.

相關內容

A code of length $n$ is said to be (combinatorially) $(\rho,L)$-list decodable if the Hamming ball of radius $\rho n$ around any vector in the ambient space does not contain more than $L$ codewords. We study a recently introduced class of higher order MDS codes, which are closely related (via duality) to codes that achieve a generalized Singleton bound for list decodability. For some $\ell\geq 1$, higher order MDS codes of length $n$, dimension $k$, and order $\ell$ are denoted as $(n,k)$-MDS($\ell$) codes. We present a number of results on the structure of these codes, identifying the `extend-ability' of their parameters in various scenarios. Specifically, for some parameter regimes, we identify conditions under which $(n_1,k_1)$-MDS($\ell_1$) codes can be obtained from $(n_2,k_2)$-MDS($\ell_2$) codes, via various techniques. We believe that these results will aid in efficient constructions of higher order MDS codes. We also obtain a new field size upper bound for the existence of such codes, which arguably improves over the best known existing bound, in some parameter regimes.

We consider problems of minimizing functionals $\mathcal{F}$ of probability measures on the Euclidean space. To propose an accelerated gradient descent algorithm for such problems, we consider gradient flow of transport maps that give push-forward measures of an initial measure. Then we propose a deterministic accelerated algorithm by extending Nesterov's acceleration technique with momentum. This algorithm do not based on the Wasserstein geometry. Furthermore, to estimate the convergence rate of the accelerated algorithm, we introduce new convexity and smoothness for $\mathcal{F}$ based on transport maps. As a result, we can show that the accelerated algorithm converges faster than a normal gradient descent algorithm. Numerical experiments support this theoretical result.

Given a sample of covariate-response pairs, we consider the subgroup selection problem of identifying a subset of the covariate domain where the regression function exceeds a pre-determined threshold. We introduce a computationally-feasible approach for subgroup selection in the context of multivariate isotonic regression based on martingale tests and multiple testing procedures for logically-structured hypotheses. Our proposed procedure satisfies a non-asymptotic, uniform Type I error rate guarantee with power that attains the minimax optimal rate up to poly-logarithmic factors. Extensions cover classification, isotonic quantile regression and heterogeneous treatment effect settings. Numerical studies on both simulated and real data confirm the practical effectiveness of our proposal.

Estimating signals underlying noisy data is a significant problem in statistics and engineering. Numerous estimators are available in the literature, depending on the observation model and estimation criterion. This paper introduces a framework that estimates the shape of the unknown signal and the signal itself. The approach utilizes a peak-persistence diagram (PPD), a novel tool that explores the dominant peaks in the potential solutions and estimates the function's shape, which includes the number of internal peaks and valleys. It then imposes this shape constraint on the search space and estimates the signal from partially-aligned data. This approach balances two previous solutions: averaging without alignment and averaging with complete elastic alignment. From a statistical viewpoint, it achieves an optimal estimator under a model with both additive noise and phase or warping noise. We also present a computationally-efficient procedure for implementing this solution and demonstrate its effectiveness on several simulated and real examples. Notably, this geometric approach outperforms the current state-of-the-art in the field.

In this paper, we study the computation of the rate-distortion-perception function (RDPF) for discrete memoryless sources subject to a single-letter average distortion constraint and a perception constraint that belongs to the family of f-divergences. For that, we leverage the fact that RDPF, assuming mild regularity conditions on the perception constraint, forms a convex programming problem. We first develop parametric characterizations of the optimal solution and utilize them in an alternating minimization approach for which we prove convergence guarantees. The resulting structure of the iterations of the alternating minimization approach renders the implementation of a generalized Blahut-Arimoto (BA) type of algorithm infeasible. To overcome this difficulty, we propose a relaxed formulation of the structure of the iterations in the alternating minimization approach, which allows for the implementation of an approximate iterative scheme. This approximation is shown, via the derivation of necessary and sufficient conditions, to guarantee convergence to a globally optimal solution. We also provide sufficient conditions on the distortion and the perception constraints which guarantee that our algorithm converges exponentially fast. We corroborate our theoretical results with numerical simulations, and we draw connections with existing results.

Motivated by applications in distributed storage, distributed computing, and homomorphic secret sharing, we study communication-efficient schemes for computing linear combinations of coded symbols. Specifically, we design low-bandwidth schemes that evaluate the weighted sum of $\ell$ coded symbols in a codeword $\pmb{c}\in\mathbb{F}^n$, when we are given access to $d$ of the remaining components in $\pmb{c}$. Formally, suppose that $\mathbb{F}$ is a field extension of $\mathbb{B}$ of degree $t$. Let $\pmb{c}$ be a codeword in a Reed-Solomon code of dimension $k$ and our task is to compute the weighted sum of $\ell$ coded symbols. In this paper, for some $s<t$, we provide an explicit scheme that performs this task by downloading $d(t-s)$ sub-symbols in $\mathbb{B}$ from $d$ available nodes, whenever $d\geq \ell|\mathbb{B}|^s-\ell+k$. In many cases, our scheme outperforms previous schemes in the literature. Furthermore, we provide a characterization of evaluation schemes for general linear codes. Then in the special case of Reed-Solomon codes, we use this characterization to derive a lower bound for the evaluation bandwidth.

We present a novel method to estimate the dominant eigenvalue and eigenvector pair of any non-negative real matrix via graph infection. The key idea in our technique lies in approximating the solution to the first-order matrix ordinary differential equation (ODE) with the Euler method. Graphs, which can be weighted, directed, and with loops, are first converted to its adjacency matrix A. Then by a naive infection model for graphs, we establish the corresponding first-order matrix ODE, through which A's dominant eigenvalue is revealed by the fastest growing term. When there are multiple dominant eigenvalues of the same magnitude, the classical power iteration method can fail. In contrast, our method can converge to the dominant eigenvalue even when same-magnitude counterparts exist, be it complex or opposite in sign. We conduct several experiments comparing the convergence between our method and power iteration. Our results show clear advantages over power iteration for tree graphs, bipartite graphs, directed graphs with periods, and Markov chains with spider-traps. To our knowledge, this is the first work that estimates dominant eigenvalue and eigenvector pair from the perspective of a dynamical system and matrix ODE. We believe our method can be adopted as an alternative to power iteration, especially for graphs.

Hate speech has become one of the most significant issues in modern society, having implications in both the online and the offline world. Due to this, hate speech research has recently gained a lot of traction. However, most of the work has primarily focused on text media with relatively little work on images and even lesser on videos. Thus, early stage automated video moderation techniques are needed to handle the videos that are being uploaded to keep the platform safe and healthy. With a view to detect and remove hateful content from the video sharing platforms, our work focuses on hate video detection using multi-modalities. To this end, we curate ~43 hours of videos from BitChute and manually annotate them as hate or non-hate, along with the frame spans which could explain the labelling decision. To collect the relevant videos we harnessed search keywords from hate lexicons. We observe various cues in images and audio of hateful videos. Further, we build deep learning multi-modal models to classify the hate videos and observe that using all the modalities of the videos improves the overall hate speech detection performance (accuracy=0.798, macro F1-score=0.790) by ~5.7% compared to the best uni-modal model in terms of macro F1 score. In summary, our work takes the first step toward understanding and modeling hateful videos on video hosting platforms such as BitChute.

We present CausalSim, a causal framework for unbiased trace-driven simulation. Current trace-driven simulators assume that the interventions being simulated (e.g., a new algorithm) would not affect the validity of the traces. However, real-world traces are often biased by the choices algorithms make during trace collection, and hence replaying traces under an intervention may lead to incorrect results. CausalSim addresses this challenge by learning a causal model of the system dynamics and latent factors capturing the underlying system conditions during trace collection. It learns these models using an initial randomized control trial (RCT) under a fixed set of algorithms, and then applies them to remove biases from trace data when simulating new algorithms. Key to CausalSim is mapping unbiased trace-driven simulation to a tensor completion problem with extremely sparse observations. By exploiting a basic distributional invariance property present in RCT data, CausalSim enables a novel tensor completion method despite the sparsity of observations. Our extensive evaluation of CausalSim on both real and synthetic datasets, including more than ten months of real data from the Puffer video streaming system shows it improves simulation accuracy, reducing errors by 53% and 61% on average compared to expert-designed and supervised learning baselines. Moreover, CausalSim provides markedly different insights about ABR algorithms compared to the biased baseline simulator, which we validate with a real deployment.

In this work we propose a low rank approximation of high fidelity finite element simulations by utilizing weights corresponding to areas of high stress levels for an abdominal aortic aneurysm, i.e. a deformed blood vessel. We focus on the van Mises stress, which corresponds to the rupture risk of the aorta. This is modeled as a Gaussian Markov random field and we define our approximation as a basis of vectors that solve a series of optimization problems. Each of these problems describes the minimization of an expected weighted quadratic loss. The weights, which encapsulate the importance of each grid point of the finite elements, can be chosen freely - either data driven or by incorporating domain knowledge. Along with a more general discussion of mathematical properties we provide an effective numerical heuristic to compute the basis under general conditions. We explicitly explore two such bases on the surface of a high fidelity finite element grid and show their efficiency for compression. We further utilize the approach to predict the van Mises stress in areas of interest using low and high fidelity simulations. Due to the high dimension of the data we have to take extra care to keep the problem numerically feasible. This is also a major concern of this work.

北京阿比特科技有限公司