亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present CausalSim, a causal framework for unbiased trace-driven simulation. Current trace-driven simulators assume that the interventions being simulated (e.g., a new algorithm) would not affect the validity of the traces. However, real-world traces are often biased by the choices algorithms make during trace collection, and hence replaying traces under an intervention may lead to incorrect results. CausalSim addresses this challenge by learning a causal model of the system dynamics and latent factors capturing the underlying system conditions during trace collection. It learns these models using an initial randomized control trial (RCT) under a fixed set of algorithms, and then applies them to remove biases from trace data when simulating new algorithms. Key to CausalSim is mapping unbiased trace-driven simulation to a tensor completion problem with extremely sparse observations. By exploiting a basic distributional invariance property present in RCT data, CausalSim enables a novel tensor completion method despite the sparsity of observations. Our extensive evaluation of CausalSim on both real and synthetic datasets, including more than ten months of real data from the Puffer video streaming system shows it improves simulation accuracy, reducing errors by 53% and 61% on average compared to expert-designed and supervised learning baselines. Moreover, CausalSim provides markedly different insights about ABR algorithms compared to the biased baseline simulator, which we validate with a real deployment.

相關內容

Model-free time-to-event regression under confounding presents challenges due to biases introduced by causal and censoring sampling mechanisms. This phenomenology poses problems for classical non-parametric estimators like Beran's or the k-nearest neighbours algorithm. In this study, we propose a natural framework that leverages the structure of reproducing kernel Hilbert spaces (RKHS) and, specifically, the concept of kernel mean embedding to address these limitations. Our framework has the potential to enable statistical counterfactual modeling, including counterfactual prediction and hypothesis testing, under right-censoring schemes. Through simulations and an application to the SPRINT trial, we demonstrate the practical effectiveness of our method, yielding coherent results when compared to parallel analyses in existing literature. We also provide a theoretical analysis of our estimator through an RKHS-valued empirical process. Our approach offers a novel tool for performing counterfactual survival estimation in observational studies with incomplete information. It can also be complemented by state-of-the-art algorithms based on semi-parametric and parametric models.

In this study, we focus on the development and implementation of a comprehensive ensemble of numerical time series forecasting models, collectively referred to as the Group of Numerical Time Series Prediction Model (G-NM). This inclusive set comprises traditional models such as Autoregressive Integrated Moving Average (ARIMA), Holt-Winters' method, and Support Vector Regression (SVR), in addition to modern neural network models including Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM). G-NM is explicitly constructed to augment our predictive capabilities related to patterns and trends inherent in complex natural phenomena. By utilizing time series data relevant to these events, G-NM facilitates the prediction of such phenomena over extended periods. The primary objective of this research is to both advance our understanding of such occurrences and to significantly enhance the accuracy of our forecasts. G-NM encapsulates both linear and non-linear dependencies, seasonalities, and trends present in time series data. Each of these models contributes distinct strengths, from ARIMA's resilience in handling linear trends and seasonality, SVR's proficiency in capturing non-linear patterns, to LSTM's adaptability in modeling various components of time series data. Through the exploitation of the G-NM potential, we strive to advance the state-of-the-art in large-scale time series forecasting models. We anticipate that this research will represent a significant stepping stone in our ongoing endeavor to comprehend and forecast the complex events that constitute the natural world.

Interpreting the inner function of neural networks is crucial for the trustworthy development and deployment of these black-box models. Prior interpretability methods focus on correlation-based measures to attribute model decisions to individual examples. However, these measures are susceptible to noise and spurious correlations encoded in the model during the training phase (e.g., biased inputs, model overfitting, or misspecification). Moreover, this process has proven to result in noisy and unstable attributions that prevent any transparent understanding of the model's behavior. In this paper, we develop a robust interventional-based method grounded by causal analysis to capture cause-effect mechanisms in pre-trained neural networks and their relation to the prediction. Our novel approach relies on path interventions to infer the causal mechanisms within hidden layers and isolate relevant and necessary information (to model prediction), avoiding noisy ones. The result is task-specific causal explanatory graphs that can audit model behavior and express the actual causes underlying its performance. We apply our method to vision models trained on classification tasks. On image classification tasks, we provide extensive quantitative experiments to show that our approach can capture more stable and faithful explanations than standard attribution-based methods. Furthermore, the underlying causal graphs reveal the neural interactions in the model, making it a valuable tool in other applications (e.g., model repair).

In this paper, we tackle the challenging problem of 3D keypoint estimation of general objects using a novel implicit representation. Previous works have demonstrated promising results for keypoint prediction through direct coordinate regression or heatmap-based inference. However, these methods are commonly studied for specific subjects, such as human bodies and faces, which possess fixed keypoint structures. They also suffer in several practical scenarios where explicit or complete geometry is not given, including images and partial point clouds. Inspired by the recent success of advanced implicit representation in reconstruction tasks, we explore the idea of using an implicit field to represent keypoints. Specifically, our key idea is employing spheres to represent 3D keypoints, thereby enabling the learnability of the corresponding signed distance field. Explicit keypoints can be extracted subsequently by our algorithm based on the Hough transform. Quantitative and qualitative evaluations also show the superiority of our representation in terms of prediction accuracy.

Optimizing a stateful dataflow language is a challenging task. There are strict correctness constraints for preserving properties expected by downstream consumers, a large space of possible optimizations, and complex analyses that must reason about the behavior of the program over time. Classic compiler techniques with specialized optimization passes yield unpredictable performance and have complex correctness proofs. But with e-graphs, we can dramatically simplify the process of building a correct optimizer while yielding more consistent results! In this short paper, we discuss our early work using e-graphs to develop an optimizer for a the Hydroflow dataflow language. Our prototype demonstrates that composing simple, easy-to-prove rewrite rules is sufficient to match techniques in hand-optimized systems.

Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Deep learning-based semi-supervised learning (SSL) algorithms have led to promising results in medical images segmentation and can alleviate doctors' expensive annotations by leveraging unlabeled data. However, most of the existing SSL algorithms in literature tend to regularize the model training by perturbing networks and/or data. Observing that multi/dual-task learning attends to various levels of information which have inherent prediction perturbation, we ask the question in this work: can we explicitly build task-level regularization rather than implicitly constructing networks- and/or data-level perturbation-and-transformation for SSL? To answer this question, we propose a novel dual-task-consistency semi-supervised framework for the first time. Concretely, we use a dual-task deep network that jointly predicts a pixel-wise segmentation map and a geometry-aware level set representation of the target. The level set representation is converted to an approximated segmentation map through a differentiable task transform layer. Simultaneously, we introduce a dual-task consistency regularization between the level set-derived segmentation maps and directly predicted segmentation maps for both labeled and unlabeled data. Extensive experiments on two public datasets show that our method can largely improve the performance by incorporating the unlabeled data. Meanwhile, our framework outperforms the state-of-the-art semi-supervised medical image segmentation methods. Code is available at: //github.com/Luoxd1996/DTC

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

The U-Net was presented in 2015. With its straight-forward and successful architecture it quickly evolved to a commonly used benchmark in medical image segmentation. The adaptation of the U-Net to novel problems, however, comprises several degrees of freedom regarding the exact architecture, preprocessing, training and inference. These choices are not independent of each other and substantially impact the overall performance. The present paper introduces the nnU-Net ('no-new-Net'), which refers to a robust and self-adapting framework on the basis of 2D and 3D vanilla U-Nets. We argue the strong case for taking away superfluous bells and whistles of many proposed network designs and instead focus on the remaining aspects that make out the performance and generalizability of a method. We evaluate the nnU-Net in the context of the Medical Segmentation Decathlon challenge, which measures segmentation performance in ten disciplines comprising distinct entities, image modalities, image geometries and dataset sizes, with no manual adjustments between datasets allowed. At the time of manuscript submission, nnU-Net achieves the highest mean dice scores across all classes and seven phase 1 tasks (except class 1 in BrainTumour) in the online leaderboard of the challenge.

北京阿比特科技有限公司