亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Reinforcement learning (RL) with linear temporal logic (LTL) objectives can allow robots to carry out symbolic event plans in unknown environments. Most existing methods assume that the event detector can accurately map environmental states to symbolic events; however, uncertainty is inevitable for real-world event detectors. Such uncertainty in an event detector generates multiple branching possibilities on LTL instructions, confusing action decisions. Moreover, the queries to the uncertain event detector, necessary for the task's progress, may increase the uncertainty further. To cope with those issues, we propose an RL framework, Learning Action and Query over Belief LTL (LAQBL), to learn an agent that can consider the diversity of LTL instructions due to uncertain event detection while avoiding task failure due to the unnecessary event-detection query. Our framework simultaneously learns 1) an embedding of belief LTL, which is multiple branching possibilities on LTL instructions using a graph neural network, 2) an action policy, and 3) a query policy which decides whether or not to query for the event detector. Simulations in a 2D grid world and image-input robotic inspection environments show that our method successfully learns actions to follow LTL instructions even with uncertain event detectors.

相關內容

Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data. However, the training process of Large Language Models (LLMs) generally incurs the update of significant parameters, which limits the applicability of FL techniques to tackle the LLMs in real scenarios. Prompt tuning can significantly reduce the number of parameters to update, but it either incurs performance degradation or low training efficiency. The straightforward utilization of prompt tuning in the FL often raises non-trivial communication costs and dramatically degrades performance. In addition, the decentralized data is generally non-Independent and Identically Distributed (non-IID), which brings client drift problems and thus poor performance. This paper proposes a Parameter-efficient prompt Tuning approach with Adaptive Optimization, i.e., FedPepTAO, to enable efficient and effective FL of LLMs. First, an efficient partial prompt tuning approach is proposed to improve performance and efficiency simultaneously. Second, a novel adaptive optimization method is developed to address the client drift problems on both the device and server sides to enhance performance further. Extensive experiments based on 10 datasets demonstrate the superb performance (up to 60.8\% in terms of accuracy) and efficiency (up to 97.59\% in terms of training time) of FedPepTAO compared with 9 baseline approaches. Our code is available at //github.com/llm-eff/FedPepTAO.

Large web crawl datasets have already played an important role in learning multimodal features with high generalization capabilities. However, there are still very limited studies investigating the details or improvements of data design. Recently, a DataComp challenge has been designed to propose the best training data with the fixed models. This paper presents our solution to both filtering track and BYOD track of the DataComp challenge. Our solution adopts large multimodal models CLIP and BLIP-2 to filter and modify web crawl data, and utilize external datasets along with a bag of tricks to improve the data quality. Experiments show our solution significantly outperforms DataComp baselines (filtering track: 6.6% improvement, BYOD track: 48.5% improvement).

We introduce fluctuating hydrodynamics approaches on surfaces for capturing the drift-diffusion dynamics of particles and microstructures immersed within curved fluid interfaces of spherical shape. We take into account the interfacial hydrodynamic coupling, traction coupling with the surrounding bulk fluid, and thermal fluctuations. For fluid-structure interactions, we introduce Immersed Boundary Methods (IBM) and related Stochastic Eulerian-Lagrangian Methods (SELM) for curved surfaces. We use these approaches to investigate the statistics of surface fluctuating hydrodynamics and microstructures. For velocity autocorrelations, we find characteristic power-law scalings $\tau^{-1}$, $\tau^{-2}$, and plateaus can emerge. This depends on the physical regime associated with the geometry, surface viscosity, and bulk viscosity. This differs from the characteristic $\tau^{-3/2}$ scaling for bulk three dimensional fluids. We develop theory explaining these observed power-laws associated with time-scales for dissipation within the fluid interface and coupling to the surrounding fluid. We then use our introduced methods to investigate a few example systems and roles of hydrodynamic coupling and thermal fluctuations including for the kinetics of passive particles and active microswimmers in curved fluid interfaces.

We develop a probabilistic graphical model (PGM) for artificially intelligent (AI) agents to infer human beliefs during a simulated urban search and rescue (USAR) scenario executed in a Minecraft environment with a team of three players. The PGM approach makes observable states and actions explicit, as well as beliefs and intentions grounded by evidence about what players see and do over time. This approach also supports inferring the effect of interventions, which are vital if AI agents are to assist human teams. The experiment incorporates manipulations of players' knowledge, and the virtual Minecraft-based testbed provides access to several streams of information, including the objects in the players' field of view. The participants are equipped with a set of marker blocks that can be placed near room entrances to signal the presence or absence of victims in the rooms to their teammates. In each team, one of the members is given a different legend for the markers than the other two, which may mislead them about the state of the rooms; that is, they will hold a false belief. We extend previous works in this field by introducing ToMCAT, an AI agent that can reason about individual and shared mental states. We find that the players' behaviors are affected by what they see in their in-game field of view, their beliefs about the meaning of the markers, and their beliefs about which meaning the team decided to adopt. In addition, we show that ToMCAT's beliefs are consistent with the players' actions and that it can infer false beliefs with accuracy significantly better than chance and comparable to inferences made by human observers.

Federated learning (FL) provides an efficient paradigm to jointly train a global model leveraging data from distributed users. As local training data comes from different users who may not be trustworthy, several studies have shown that FL is vulnerable to poisoning attacks. Meanwhile, to protect the privacy of local users, FL is usually trained in a differentially private way (DPFL). Thus, in this paper, we ask: What are the underlying connections between differential privacy and certified robustness in FL against poisoning attacks? Can we leverage the innate privacy property of DPFL to provide certified robustness for FL? Can we further improve the privacy of FL to improve such robustness certification? We first investigate both user-level and instance-level privacy of FL and provide formal privacy analysis to achieve improved instance-level privacy. We then provide two robustness certification criteria: certified prediction and certified attack inefficacy for DPFL on both user and instance levels. Theoretically, we provide the certified robustness of DPFL based on both criteria given a bounded number of adversarial users or instances. Empirically, we conduct extensive experiments to verify our theories under a range of poisoning attacks on different datasets. We find that increasing the level of privacy protection in DPFL results in stronger certified attack inefficacy; however, it does not necessarily lead to a stronger certified prediction. Thus, achieving the optimal certified prediction requires a proper balance between privacy and utility loss.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

Federated learning is a new distributed machine learning framework, where a bunch of heterogeneous clients collaboratively train a model without sharing training data. In this work, we consider a practical and ubiquitous issue in federated learning: intermittent client availability, where the set of eligible clients may change during the training process. Such an intermittent client availability model would significantly deteriorate the performance of the classical Federated Averaging algorithm (FedAvg for short). We propose a simple distributed non-convex optimization algorithm, called Federated Latest Averaging (FedLaAvg for short), which leverages the latest gradients of all clients, even when the clients are not available, to jointly update the global model in each iteration. Our theoretical analysis shows that FedLaAvg attains the convergence rate of $O(1/(N^{1/4} T^{1/2}))$, achieving a sublinear speedup with respect to the total number of clients. We implement and evaluate FedLaAvg with the CIFAR-10 dataset. The evaluation results demonstrate that FedLaAvg indeed reaches a sublinear speedup and achieves 4.23% higher test accuracy than FedAvg.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

北京阿比特科技有限公司