亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Adversarial camouflage has garnered attention for its ability to attack object detectors from any viewpoint by covering the entire object's surface. However, universality and robustness in existing methods often fall short as the transferability aspect is often overlooked, thus restricting their application only to a specific target with limited performance. To address these challenges, we present Adversarial Camouflage for Transferable and Intensive Vehicle Evasion (ACTIVE), a state-of-the-art physical camouflage attack framework designed to generate universal and robust adversarial camouflage capable of concealing any 3D vehicle from detectors. Our framework incorporates innovative techniques to enhance universality and robustness: a refined texture rendering that enables common texture application to different vehicles without being constrained to a specific texture map, a novel stealth loss that renders the vehicle undetectable, and a smooth and camouflage loss to enhance the naturalness of the adversarial camouflage. Our extensive experiments on 15 different models show that ACTIVE consistently outperforms existing works on various public detectors, including the latest YOLOv7. Notably, our universality evaluations reveal promising transferability to other vehicle classes, tasks (segmentation models), and the real world, not just other vehicles.

相關內容

Multiple object tracking (MOT) is a fundamental component of perception systems for autonomous driving, and its robustness to unseen conditions is a requirement to avoid life-critical failures. Despite the urge of safety in driving systems, no solution to the MOT adaptation problem to domain shift in test-time conditions has ever been proposed. However, the nature of a MOT system is manifold - requiring object detection and instance association - and adapting all its components is non-trivial. In this paper, we analyze the effect of domain shift on appearance-based trackers, and introduce DARTH, a holistic test-time adaptation framework for MOT. We propose a detection consistency formulation to adapt object detection in a self-supervised fashion, while adapting the instance appearance representations via our novel patch contrastive loss. We evaluate our method on a variety of domain shifts - including sim-to-real, outdoor-to-indoor, indoor-to-outdoor - and substantially improve the source model performance on all metrics. Code: //github.com/mattiasegu/darth.

Outsourced computing is widely used today. However, current approaches for protecting client data in outsourced computing fall short: use of cryptographic techniques like fully-homomorphic encryption incurs substantial costs, whereas use of hardware-assisted trusted execution environments has been shown to be vulnerable to run-time and side-channel attacks. We present BliMe, an architecture to realize efficient and secure outsourced computation. BliMe consists of a novel and minimal set of instruction set architecture (ISA) extensions implementing a taint-tracking policy to ensure the confidentiality of client data even in the presence of server vulnerabilities. To secure outsourced computation, the BliMe extensions can be used together with an attestable, fixed-function hardware security module (HSM) and an encryption engine that provides atomic decrypt-and-taint and encrypt-and-untaint operations. Clients rely on remote attestation and key agreement with the HSM to ensure that their data can be transferred securely to and from the encryption engine and will always be protected by BliMe's taint-tracking policy while at the server. We provide an RTL implementation BliMe-BOOM based on the BOOM RISC-V core. BliMe-BOOM requires no reduction in clock frequency relative to unmodified BOOM, and has minimal power ($\lt1.5\%$) and FPGA resource ($\leq9.0\%$) overheads. Various implementations of BliMe incur only moderate performance overhead ($8-25\%$). We also provide a machine-checked security proof of a simplified model ISA with BliMe extensions.

Although a few approaches are proposed to convert relational databases to graphs, there is a genuine lack of systematic evaluation across a wider spectrum of databases. Recognising the important issue of query mapping, this paper proposes an approach Rel2Graph, an automatic knowledge graph construction (KGC) approach from an arbitrary number of relational databases. Our approach also supports the mapping of conjunctive SQL queries into pattern-based NoSQL queries. We evaluate our proposed approach on two widely used relational database-oriented datasets: Spider and KaggleDBQA benchmarks for semantic parsing. We employ the execution accuracy (EA) metric to quantify the proportion of results by executing the NoSQL queries on the property knowledge graph we construct that aligns with the results of SQL queries performed on relational databases. Consequently, the counterpart property knowledge graph of benchmarks with high accuracy and integrity can be ensured. The code and data will be publicly available. The code and data are available at github\footnote{//github.com/nlp-tlp/Rel2Graph}.

Modern deepfake detectors have achieved encouraging results, when training and test images are drawn from the same data collection. However, when these detectors are applied to images produced with unknown deepfake-generation techniques, considerable performance degradations are commonly observed. In this paper, we propose a novel deepfake detector, called SeeABLE, that formalizes the detection problem as a (one-class) out-of-distribution detection task and generalizes better to unseen deepfakes. Specifically, SeeABLE first generates local image perturbations (referred to as soft-discrepancies) and then pushes the perturbed faces towards predefined prototypes using a novel regression-based bounded contrastive loss. To strengthen the generalization performance of SeeABLE to unknown deepfake types, we generate a rich set of soft discrepancies and train the detector: (i) to localize, which part of the face was modified, and (ii) to identify the alteration type. To demonstrate the capabilities of SeeABLE, we perform rigorous experiments on several widely-used deepfake datasets and show that our model convincingly outperforms competing state-of-the-art detectors, while exhibiting highly encouraging generalization capabilities.

Information extraction tasks such as event extraction require an in-depth understanding of the output structure and sub-task dependencies. They heavily rely on task-specific training data in the form of (passage, target structure) pairs to obtain reasonable performance. However, obtaining such data through human annotation is costly, leading to a pressing need for low-resource information extraction approaches that require minimal human labeling for real-world applications. Fine-tuning supervised models with synthesized training data would be a generalizable method, but the existing data generation methods either still rely on large-scale ground-truth data or cannot be applied to complicated IE tasks due to their poor performance. To address these challenges, we propose STAR, a data generation method that leverages Large Language Models (LLMs) to synthesize data instances given limited seed demonstrations, thereby boosting low-resource information extraction performance. Our approach involves generating target structures (Y) followed by generating passages (X), all accomplished with the aid of LLMs. We design fine-grained step-by-step instructions to obtain the initial data instances. We further reduce errors and improve data quality through self-reflection error identification and self-refinement with iterative revision. Our experiments show that the data generated by STAR significantly improves the performance of low-resource event extraction and relation extraction tasks, even surpassing the effectiveness of human-curated data. Human assessment of the data quality shows STAR-generated data exhibits higher passage quality and better align with the task definitions compared with the human-curated data.

Pyrit is a field simulation software based on the finite element method written in Python to solve coupled systems of partial differential equations. It is designed as a modular software that is easily modifiable and extendable. The framework can, therefore, be adapted to various activities, i.e. research, education and industry collaboration.

Tracking and modeling unknown rigid objects in the environment play a crucial role in autonomous unmanned systems and virtual-real interactive applications. However, many existing Simultaneous Localization, Mapping and Moving Object Tracking (SLAMMOT) methods focus solely on estimating specific object poses and lack estimation of object scales and are unable to effectively track unknown objects. In this paper, we propose a novel SLAM backend that unifies ego-motion tracking, rigid object motion tracking, and modeling within a joint optimization framework. In the perception part, we designed a pixel-level asynchronous object tracker (AOT) based on the Segment Anything Model (SAM) and DeAOT, enabling the tracker to effectively track target unknown objects guided by various predefined tasks and prompts. In the modeling part, we present a novel object-centric quadric parameterization to unify both static and dynamic object initialization and optimization. Subsequently, in the part of object state estimation, we propose a tightly coupled optimization model for object pose and scale estimation, incorporating hybrids constraints into a novel dual sliding window optimization framework for joint estimation. To our knowledge, we are the first to tightly couple object pose tracking with light-weight modeling of dynamic and static objects using quadric. We conduct qualitative and quantitative experiments on simulation datasets and real-world datasets, demonstrating the state-of-the-art robustness and accuracy in motion estimation and modeling. Our system showcases the potential application of object perception in complex dynamic scenes.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司