Weird numbers are abundant numbers that are not pseudoperfect. Since their introduction, the existence of odd weird numbers has been an open problem. In this work, we describe our computational effort to search for odd weird numbers, which shows their non-existence up to $10^{21}$. We also searched up to $10^{28}$ for numbers with an abundance below $10^{14}$, to no avail. Our approach to speed up the search can be viewed as an application of reverse search in the domain of combinatorial optimization, and may be useful for other similar quest for natural numbers with special properties that depend crucially on their factorization.
Purpose- Coarctation of the Aorta (CoA) patient-specific computational fluid dynamics (CFD) studies in resource constrained settings are limited by the available imaging modalities for geometry and velocity data acquisition. Doppler echocardiography has been seen as a suitable velocity acquisition modality due to its higher availability and safety. This study aimed to investigate the application of classical machine learning (ML) methods to create an adequate and robust approach for obtaining boundary conditions (BCs) from Doppler Echocardiography images, for haemodynamic modeling using CFD. Methods- Our proposed approach combines ML and CFD to model haemodynamic flow within the region of interest. With the key feature of the approach being the use of ML models to calibrate the inlet and outlet boundary conditions (BCs) of the CFD model. The key input variable for the ML model was the patients heart rate as this was the parameter that varied in time across the measured vessels within the study. ANSYS Fluent was used for the CFD component of the study whilst the scikit-learn python library was used for the ML component. Results- We validated our approach against a real clinical case of severe CoA before intervention. The maximum coarctation velocity of our simulations were compared to the measured maximum coarctation velocity obtained from the patient whose geometry is used within the study. Of the 5 ML models used to obtain BCs the top model was within 5\% of the measured maximum coarctation velocity. Conclusion- The framework demonstrated that it was capable of taking variations of the patients heart rate between measurements into account. Thus, enabling the calculation of BCs that were physiologically realistic when the heart rate was scaled across each vessel whilst providing a reasonably accurate solution.
We study the problem of unbiased estimation of expectations with respect to (w.r.t.) $\pi$ a given, general probability measure on $(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$ that is absolutely continuous with respect to a standard Gaussian measure. We focus on simulation associated to a particular class of diffusion processes, sometimes termed the Schr\"odinger-F\"ollmer Sampler, which is a simulation technique that approximates the law of a particular diffusion bridge process $\{X_t\}_{t\in [0,1]}$ on $\mathbb{R}^d$, $d\in \mathbb{N}_0$. This latter process is constructed such that, starting at $X_0=0$, one has $X_1\sim \pi$. Typically, the drift of the diffusion is intractable and, even if it were not, exact sampling of the associated diffusion is not possible. As a result, \cite{sf_orig,jiao} consider a stochastic Euler-Maruyama scheme that allows the development of biased estimators for expectations w.r.t.~$\pi$. We show that for this methodology to achieve a mean square error of $\mathcal{O}(\epsilon^2)$, for arbitrary $\epsilon>0$, the associated cost is $\mathcal{O}(\epsilon^{-5})$. We then introduce an alternative approach that provides unbiased estimates of expectations w.r.t.~$\pi$, that is, it does not suffer from the time discretization bias or the bias related with the approximation of the drift function. We prove that to achieve a mean square error of $\mathcal{O}(\epsilon^2)$, the associated cost is, with high probability, $\mathcal{O}(\epsilon^{-2}|\log(\epsilon)|^{2+\delta})$, for any $\delta>0$. We implement our method on several examples including Bayesian inverse problems.
Consider words of length $n$. The set of all periods of a word of length $n$ is a subset of $\{0,1,2,\ldots,n-1\}$. However, any subset of $\{0,1,2,\ldots,n-1\}$ is not necessarily a valid set of periods. In a seminal paper in 1981, Guibas and Odlyzko have proposed to encode the set of periods of a word into an $n$ long binary string, called an autocorrelation, where a one at position $i$ denotes a period of $i$. They considered the question of recognizing a valid period set, and also studied the number of valid period sets for length $n$, denoted $\kappa_n$. They conjectured that $\ln(\kappa_n)$ asymptotically converges to a constant times $\ln^2(n)$. If improved lower bounds for $\ln(\kappa_n)/\ln^2(n)$ were proposed in 2001, the question of a tight upper bound has remained opened since Guibas and Odlyzko's paper. Here, we exhibit an upper bound for this fraction, which implies its convergence and closes this long standing conjecture. Moreover, we extend our result to find similar bounds for the number of correlations: a generalization of autocorrelations which encodes the overlaps between two strings.
A two dimensional eigenvalue problem (2DEVP) of a Hermitian matrix pair $(A, C)$ is introduced in this paper. The 2DEVP can be viewed as a linear algebraic formulation of the well-known eigenvalue optimization problem of the parameter matrix $H(\mu) = A - \mu C$. We present fundamental properties of the 2DEVP such as the existence, the necessary and sufficient condition for the finite number of 2D-eigenvalues and variational characterizations. We use eigenvalue optimization problems from the minmax of two Rayleigh quotients and the computation of distance to instability to show their connections with the 2DEVP and new insights of these problems derived from the properties of the 2DEVP.
We propose to combine the Carleman estimate and the Newton method to solve an inverse source problem for nonlinear parabolic equations from lateral boundary data. The stability of this inverse source problem is conditionally logarithmic. Hence, numerical results due to the conventional least squares optimization might not be reliable. In order to enhance the stability, we approximate this problem by truncating the high frequency terms of the Fourier series that represents the solution to the governing equation. By this, we derive a system of nonlinear elliptic PDEs whose solution consists of Fourier coefficients of the solution to the parabolic governing equation. We solve this system by the Carleman-Newton method. The Carleman-Newton method is a newly developed algorithm to solve nonlinear PDEs. The strength of the Carleman-Newton method includes (1) no good initial guess is required and (2) the computational cost is not expensive. These features are rigorously proved. Having the solutions to this system in hand, we can directly compute the solution to the proposed inverse problem. Some numerical examples are displayed.
Full Waveform Inversion (FWI) is a successful and well-established inverse method for reconstructing material models from measured wave signals. In the field of seismic exploration, FWI has proven particularly successful in the reconstruction of smoothly varying material deviations. In contrast, non-destructive testing (NDT) often requires the detection and specification of sharp defects in a specimen. If the contrast between materials is low, FWI can be successfully applied to these problems as well. However, so far the method is not fully suitable to image defects such as voids, which are characterized by a high contrast in the material parameters. In this paper, we introduce a dimensionless scaling function $\gamma$ to model voids in the forward and inverse scalar wave equation problem. Depending on which material parameters this function $\gamma$ scales, different modeling approaches are presented, leading to three formulations of mono-parameter FWI and one formulation of two-parameter FWI. The resulting problems are solved by first-order optimization, where the gradient is computed by an ajdoint state method. The corresponding Fr\'echet kernels are derived for each approach and the associated minimization is performed using an L-BFGS algorithm. A comparison between the different approaches shows that scaling the density with $\gamma$ is most promising for parameterizing voids in the forward and inverse problem. Finally, in order to consider arbitrary complex geometries known a priori, this approach is combined with an immersed boundary method, the finite cell method (FCM).
The weakly compressible smoothed particle hydrodynamics (WCSPH) method has been employed to simulate various physical phenomena involving fluids and solids. Various methods have been proposed to implement the solid wall, and inlet/outlet and other boundary conditions. However, error estimation and the formal rates of convergence for these methods have not been discussed or examined carefully. In this paper, we use the method of manufactured solution (MMS) to verify the convergence properties of a variety of commonly employed of various solid, inlet, and outlet boundary implementations. In order to perform this study, we propose various manufactured solutions for different domains. On the basis of the convergence offered by these methods, we systematically propose a convergent WCSPH scheme along with suitable methods for implementing the boundary conditions. Along with other recent developments in the use of adaptive resolution, this paves the way for accurate and efficient simulation of incompressible or weakly-compressible fluid flows using the SPH method.
Currently, pre-trained models can be considered the default choice for a wide range of NLP tasks. Despite their SoTA results, there is practical evidence that these models may require a different number of computing layers for different input sequences, since evaluating all layers leads to overconfidence in wrong predictions (namely overthinking). This problem can potentially be solved by implementing adaptive computation time approaches, which were first designed to improve inference speed. Recently proposed PonderNet may be a promising solution for performing an early exit by treating the exit layer's index as a latent variable. However, the originally proposed exit criterion, relying on sampling from trained posterior distribution on the probability of exiting from the $i$-th layer, introduces major variance in exit layer indices, significantly reducing the resulting model's performance. In this paper, we propose improving PonderNet with a novel deterministic Q-exit criterion and a revisited model architecture. We adapted the proposed mechanism to ALBERT and RoBERTa and compared it with recent methods for performing an early exit. We observed that the proposed changes can be considered significant improvements on the original PonderNet architecture and outperform PABEE on a wide range of GLUE tasks. In addition, we also performed an in-depth ablation study of the proposed architecture to further understand Lambda layers and their performance.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.