亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of unbiased estimation of expectations with respect to (w.r.t.) $\pi$ a given, general probability measure on $(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$ that is absolutely continuous with respect to a standard Gaussian measure. We focus on simulation associated to a particular class of diffusion processes, sometimes termed the Schr\"odinger-F\"ollmer Sampler, which is a simulation technique that approximates the law of a particular diffusion bridge process $\{X_t\}_{t\in [0,1]}$ on $\mathbb{R}^d$, $d\in \mathbb{N}_0$. This latter process is constructed such that, starting at $X_0=0$, one has $X_1\sim \pi$. Typically, the drift of the diffusion is intractable and, even if it were not, exact sampling of the associated diffusion is not possible. As a result, \cite{sf_orig,jiao} consider a stochastic Euler-Maruyama scheme that allows the development of biased estimators for expectations w.r.t.~$\pi$. We show that for this methodology to achieve a mean square error of $\mathcal{O}(\epsilon^2)$, for arbitrary $\epsilon>0$, the associated cost is $\mathcal{O}(\epsilon^{-5})$. We then introduce an alternative approach that provides unbiased estimates of expectations w.r.t.~$\pi$, that is, it does not suffer from the time discretization bias or the bias related with the approximation of the drift function. We prove that to achieve a mean square error of $\mathcal{O}(\epsilon^2)$, the associated cost is, with high probability, $\mathcal{O}(\epsilon^{-2}|\log(\epsilon)|^{2+\delta})$, for any $\delta>0$. We implement our method on several examples including Bayesian inverse problems.

相關內容

The stochastic mirror descent (SMD) algorithm is a general class of training algorithms, which includes the celebrated stochastic gradient descent (SGD), as a special case. It utilizes a mirror potential to influence the implicit bias of the training algorithm. In this paper we explore the performance of the SMD iterates on mean-field ensemble models. Our results generalize earlier ones obtained for SGD on such models. The evolution of the distribution of parameters is mapped to a continuous time process in the space of probability distributions. Our main result gives a nonlinear partial differential equation to which the continuous time process converges in the asymptotic regime of large networks. The impact of the mirror potential appears through a multiplicative term that is equal to the inverse of its Hessian and which can be interpreted as defining a gradient flow over an appropriately defined Riemannian manifold. We provide numerical simulations which allow us to study and characterize the effect of the mirror potential on the performance of networks trained with SMD for some binary classification problems.

Testing Machine Learning (ML) models and AI-Infused Applications (AIIAs), or systems that contain ML models, is highly challenging. In addition to the challenges of testing classical software, it is acceptable and expected that statistical ML models sometimes output incorrect results. A major challenge is to determine when the level of incorrectness, e.g., model accuracy or F1 score for classifiers, is acceptable and when it is not. In addition to business requirements that should provide a threshold, it is a best practice to require any proposed ML solution to out-perform simple baseline models, such as a decision tree. We have developed complexity measures, which quantify how difficult given observations are to assign to their true class label; these measures can then be used to automatically determine a baseline performance threshold. These measures are superior to the best practice baseline in that, for a linear computation cost, they also quantify each observation' classification complexity in an explainable form, regardless of the classifier model used. Our experiments with both numeric synthetic data and real natural language chatbot data demonstrate that the complexity measures effectively highlight data regions and observations that are likely to be misclassified.

Relevance Vector Machine (RVM) is a supervised learning algorithm extended from Support Vector Machine (SVM) based on the Bayesian sparsity model. Compared with the regression problem, RVM classification is difficult to be conducted because there is no closed-form solution for the weight parameter posterior. Original RVM classification algorithm used Newton's method in optimization to obtain the mode of weight parameter posterior then approximated it by a Gaussian distribution in Laplace's method. It would work but just applied the frequency methods in a Bayesian framework. This paper proposes a Generic Bayesian approach for the RVM classification. We conjecture that our algorithm achieves convergent estimates of the quantities of interest compared with the nonconvergent estimates of the original RVM classification algorithm. Furthermore, a Fully Bayesian approach with the hierarchical hyperprior structure for RVM classification is proposed, which improves the classification performance, especially in the imbalanced data problem. By the numeric studies, our proposed algorithms obtain high classification accuracy rates. The Fully Bayesian hierarchical hyperprior method outperforms the Generic one for the imbalanced data classification.

The maximum likelihood estimation of the left-truncated log-logistic distribution with a given truncation point is analyzed in detail from both mathematical and numerical perspectives. These maximum likelihood equations often do not possess a solution, even for small truncations. A simple criterion is provided for the existence of a regular maximum likelihood solution. In this case a profile likelihood function can be constructed and the optimisation problem is reduced to one dimension. When the maximum likelihood equations do not admit a solution for certain data samples, it is shown that the Pareto distribution is the $L^1$-limit of the degenerated left-truncated log-logistic distribution. Using this mathematical information, a highly efficient Monte Carlo simulation is performed to obtain critical values for some goodness-of-fit tests. The confidence tables and an interpolation formula are provided and several applications to real world data are presented.

Quantum simulation is a prominent application of quantum computers. While there is extensive previous work on simulating finite-dimensional systems, less is known about quantum algorithms for real-space dynamics. We conduct a systematic study of such algorithms. In particular, we show that the dynamics of a $d$-dimensional Schr\"{o}dinger equation with $\eta$ particles can be simulated with gate complexity $\tilde{O}\bigl(\eta d F \text{poly}(\log(g'/\epsilon))\bigr)$, where $\epsilon$ is the discretization error, $g'$ controls the higher-order derivatives of the wave function, and $F$ measures the time-integrated strength of the potential. Compared to the best previous results, this exponentially improves the dependence on $\epsilon$ and $g'$ from $\text{poly}(g'/\epsilon)$ to $\text{poly}(\log(g'/\epsilon))$ and polynomially improves the dependence on $T$ and $d$, while maintaining best known performance with respect to $\eta$. For the case of Coulomb interactions, we give an algorithm using $\eta^{3}(d+\eta)T\text{poly}(\log(\eta dTg'/(\Delta\epsilon)))/\Delta$ one- and two-qubit gates, and another using $\eta^{3}(4d)^{d/2}T\text{poly}(\log(\eta dTg'/(\Delta\epsilon)))/\Delta$ one- and two-qubit gates and QRAM operations, where $T$ is the evolution time and the parameter $\Delta$ regulates the unbounded Coulomb interaction. We give applications to several computational problems, including faster real-space simulation of quantum chemistry, rigorous analysis of discretization error for simulation of a uniform electron gas, and a quadratic improvement to a quantum algorithm for escaping saddle points in nonconvex optimization.

Continuum robots have the potential to enable new applications in medicine, inspection, and countless other areas due to their unique shape, compliance, and size. Excellent progess has been made in the mechanical design and dynamic modelling of continuum robots, to the point that there are some canonical designs, although new concepts continue to be explored. In this paper, we turn to the problem of state estimation for continuum robots that can been modelled with the common Cosserat rod model. Sensing for continuum robots might comprise external camera observations, embedded tracking coils or strain gauges. We repurpose a Gaussian process (GP) regression approach to state estimation, initially developed for continuous-time trajectory estimation in $SE(3)$. In our case, the continuous variable is not time but arclength and we show how to estimate the continuous shape (and strain) of the robot (along with associated uncertainties) given discrete, noisy measurements of both pose and strain along the length. We demonstrate our approach quantitatively through simulations as well as through experiments. Our evaluations show that accurate and continuous estimates of a continuum robot's shape can be achieved, resulting in average end-effector errors between the estimated and ground truth shape as low as 3.5mm and 0.016$^\circ$ in simulation or 3.3mm and 0.035$^\circ$ for unloaded configurations and 6.2mm and 0.041$^\circ$ for loaded ones during experiments, when using discrete pose measurements.

Estimating the expectations of functionals applied to sums of random variables (RVs) is a well-known problem encountered in many challenging applications. Generally, closed-form expressions of these quantities are out of reach. A naive Monte Carlo simulation is an alternative approach. However, this method requires numerous samples for rare event problems. Therefore, it is paramount to use variance reduction techniques to develop fast and efficient estimation methods. In this work, we use importance sampling (IS), known for its efficiency in requiring fewer computations to achieve the same accuracy requirements. We propose a state-dependent IS scheme based on a stochastic optimal control formulation, where the control is dependent on state and time. We aim to calculate rare event quantities that could be written as an expectation of a functional of the sums of independent RVs. The proposed algorithm is generic and can be applied without restrictions on the univariate distributions of RVs or the functional applied to the sum. We apply this approach to the log-normal distribution to compute the left tail and cumulative distribution of the ratio of independent RVs. For each case, we numerically demonstrate that the proposed state-dependent IS algorithm compares favorably to most well-known estimators dealing with similar problems.

We present an alternating least squares type numerical optimization scheme to estimate conditionally-independent mixture models in $\mathbb{R}^n$, with minimal additional distributional assumptions. Following the method of moments, we tackle a coupled system of low-rank tensor decomposition problems. The steep costs associated with high-dimensional tensors are avoided, through the development of specialized tensor-free operations. Numerical experiments illustrate the performance of the algorithm and its applicability to various models and applications. In many cases the results exhibit improved reliability over the expectation-maximization algorithm, with similar time and storage costs. We also provide some supporting theory, establishing identifiability and local linear convergence.

In this paper, we consider recent progress in estimating the average treatment effect when extreme inverse probability weights are present and focus on methods that account for a possible violation of the positivity assumption. These methods aim at estimating the treatment effect on the subpopulation of patients for whom there is a clinical equipoise. We propose a systematic approach to determine their related causal estimands and develop new insights into the properties of the weights targeting such a subpopulation. Then, we examine the roles of overlap weights, matching weights, Shannon's entropy weights, and beta weights. This helps us characterize and compare their underlying estimators, analytically and via simulations, in terms of the accuracy, precision, and root mean squared error. Moreover, we study the asymptotic behaviors of their augmented estimators (that mimic doubly robust estimators), which lead to improved estimations when either the propensity or the regression models are correctly specified. Based on the analytical and simulation results, we conclude that overall overlap weights are preferable to matching weights, especially when there is moderate or extreme violations of the positivity assumption. Finally, we illustrate the methods using a real data example marked by extreme inverse probability weights.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司