亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Global Navigation Satellite Systems (GNSS) are integrated into many devices. However, civilian GNSS signals are usually not cryptographically protected. This makes attacks that forge signals relatively easy. Considering modern devices often have network connections and onboard sensors, the proposed here Probabilistic Detection of GNSS Spoofing (PDS) scheme is based on such opportunistic information. PDS has at its core two parts. First, a regression problem with motion model constraints, which equalizes the noise of all locations considering the motion model of the device. Second, a Gaussian process, that analyzes statistical properties of location data to construct uncertainty. Then, a likelihood function, that fuses the two parts, as a basis for a Neyman-Pearson lemma (NPL)-based detection strategy. Our experimental evaluation shows a performance gain over the state-of-the-art, in terms of attack detection effectiveness.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 各向同性 · 操作 · Integration · 散度 ·
2023 年 6 月 23 日

This paper introduces general methodologies for constructing closed-form solutions to several important partial differential equations (PDEs) with polynomial right-hand sides in two and three spatial dimensions. The covered equations include the isotropic and anisotropic Poisson, Helmholtz, Stokes, and elastostatic equations, as well as the time-harmonic linear elastodynamic and Maxwell equations. Polynomial solutions have recently regained significance in the development of numerical techniques for evaluating volume integral operators and have potential applications in certain kinds of Trefftz finite element methods. Our approach to all of these PDEs relates the particular solution to polynomial solutions of the Poisson and Helmholtz polynomial particular solutions, solutions that can in turn be obtained, respectively, from expansions using homogeneous polynomials and the Neumann series expansion of the operator $(k^2+\Delta)^{-1}$. No matrix inversion is required to compute the solution. The method naturally incorporates divergence constraints on the solution, such as in the case of Maxwell and Stokes flow equations. This work is accompanied by a freely available Julia library, \texttt{PolynomialSolutions.jl}, which implements the proposed methodology in a non-symbolic format and efficiently constructs and provides access to rapid evaluation of the desired solution.

Statisticians show growing interest in estimating and analyzing heterogeneity in causal effects in observational studies. However, there usually exists a trade-off between accuracy and interpretability for developing a desirable estimator for treatment effects, especially in the case when there are a large number of features in estimation. To make efforts to address the issue, we propose a score-based framework for estimating the Conditional Average Treatment Effect (CATE) function in this paper. The framework integrates two components: (i) leverage the joint use of propensity and prognostic scores in a matching algorithm to obtain a proxy of the heterogeneous treatment effects for each observation, (ii) utilize non-parametric regression trees to construct an estimator for the CATE function conditioning on the two scores. The method naturally stratifies treatment effects into subgroups over a 2d grid whose axis are the propensity and prognostic scores. We conduct benchmark experiments on multiple simulated data and demonstrate clear advantages of the proposed estimator over state of the art methods. We also evaluate empirical performance in real-life settings, using two observational data from a clinical trial and a complex social survey, and interpret policy implications following the numerical results.

Reinforcement learning algorithms commonly seek to optimize policies for solving one particular task. How should we explore an unknown dynamical system such that the estimated model allows us to solve multiple downstream tasks in a zero-shot manner? In this paper, we address this challenge, by developing an algorithm -- OPAX -- for active exploration. OPAX uses well-calibrated probabilistic models to quantify the epistemic uncertainty about the unknown dynamics. It optimistically -- w.r.t. to plausible dynamics -- maximizes the information gain between the unknown dynamics and state observations. We show how the resulting optimization problem can be reduced to an optimal control problem that can be solved at each episode using standard approaches. We analyze our algorithm for general models, and, in the case of Gaussian process dynamics, we give a sample complexity bound and show that the epistemic uncertainty converges to zero. In our experiments, we compare OPAX with other heuristic active exploration approaches on several environments. Our experiments show that OPAX is not only theoretically sound but also performs well for zero-shot planning on novel downstream tasks.

The algebraic degree is an important parameter of Boolean functions used in cryptography. When a function in a large number of variables is not given explicitly in algebraic normal form, it might not be feasible to compute its degree. Instead, one can try to estimate the degree using probabilistic tests. We propose a probabilistic test for deciding whether the algebraic degree of a Boolean function $f$ is below a certain value $k$. The test involves picking an affine space of dimension $k$ and testing whether the values on $f$ on that space sum up to zero. If $deg(f)<k$, then $f$ will always pass the test, otherwise it will sometimes pass and sometimes fail the test, depending on which affine space was chosen. The probability of failing the proposed test is closely related to the number of monomials of degree $k$ in a polynomial $g$, averaged over all the polynomials $g$ which are affine equivalent to $f$. We initiate the study of the probability of failing the proposed ``$deg(f)<k$'' test. We show that in the particular case when the degree of $f$ is actually equal to $k$, the probability will be in the interval $(0.288788, 0.5]$, and therefore a small number of runs of the test is sufficient to give, with very high probability, the correct answer. Exact values of this probability for all the polynomials in 8 variables were computed using the representatives listed by Hou and by Langevin and Leander.

Treatment effect estimation is of high-importance for both researchers and practitioners across many scientific and industrial domains. The abundance of observational data makes them increasingly used by researchers for the estimation of causal effects. However, these data suffer from biases, from several weaknesses, leading to inaccurate causal effect estimations, if not handled properly. Therefore, several machine learning techniques have been proposed, most of them focusing on leveraging the predictive power of neural network models to attain more precise estimation of causal effects. In this work, we propose a new methodology, named Nearest Neighboring Information for Causal Inference (NNCI), for integrating valuable nearest neighboring information on neural network-based models for estimating treatment effects. The proposed NNCI methodology is applied to some of the most well established neural network-based models for treatment effect estimation with the use of observational data. Numerical experiments and analysis provide empirical and statistical evidence that the integration of NNCI with state-of-the-art neural network models leads to considerably improved treatment effect estimations on a variety of well-known challenging benchmarks.

We propose a robust and reliable evaluation metric for generative models by introducing topological and statistical treatments for rigorous support estimation. Existing metrics, such as Inception Score (IS), Frechet Inception Distance (FID), and the variants of Precision and Recall (P&R), heavily rely on supports that are estimated from sample features. However, the reliability of their estimation has not been seriously discussed (and overlooked) even though the quality of the evaluation entirely depends on it. In this paper, we propose Topological Precision and Recall (TopP&R, pronounced 'topper'), which provides a systematic approach to estimating supports, retaining only topologically and statistically important features with a certain level of confidence. This not only makes TopP&R strong for noisy features, but also provides statistical consistency. Our theoretical and experimental results show that TopP&R is robust to outliers and non-independent and identically distributed (Non-IID) perturbations, while accurately capturing the true trend of change in samples. To the best of our knowledge, this is the first evaluation metric focused on the robust estimation of the support and provides its statistical consistency under noise.

Physics-based optical flow models have been successful in capturing the deformities in fluid motion arising from digital imagery. However, a common theoretical framework analyzing several physics-based models is missing. In this regard, we formulate a general framework for fluid motion estimation using a constraint-based refinement approach. We demonstrate that for a particular choice of constraint, our results closely approximate the classical continuity equation-based method for fluid flow. This closeness is theoretically justified by augmented Lagrangian method in a novel way. The convergence of Uzawa iterates is shown using a modified bounded constraint algorithm. The mathematical well-posedness is studied in a Hilbert space setting. Further, we observe a surprising connection to the Cauchy-Riemann operator that diagonalizes the system leading to a diffusive phenomenon involving the divergence and the curl of the flow. Several numerical experiments are performed and the results are shown on different datasets. Additionally, we demonstrate that a flow-driven refinement process involving the curl of the flow outperforms the classical physics-based optical flow method without any additional assumptions on the image data.

In the absence of an authoritative statement about a rumor, people may expose the truth behind such rumor through their responses on social media. Most rumor detection methods aggregate the information of all the responses and have made great progress. However, due to the different backgrounds of users, the responses have different relevance for discovering th suspicious points hidden in a rumor claim. The methods that focus on all the responding tweets would dilute the effect of the critical ones. Moreover, for a multi-modal rumor claim, the focus of a user may be on several words in the text or an object in the image, so the different modalities should be considered to select the relevant responses and verify the claim. In this paper, we propose a novel multi-modal rumor detection model, termed Focal Reasoning Model (FoRM), to filter out the irrelevant responses and further conduct fine-grained reasoning with the multi-modal claim and corresponding responses. Concretely, there are two main components in our FoRM: the coarse-grained selection and the fine-grained reasoning. The coarse-grained selection component leverages the post-level features of the responses to verify the claim and learns a relevant score of each response. Based on the relevant scores, the most relevant responses are reserved as the critical ones to the further reasoning. In the fine-grained reasoning component, we design a relation attention module to explore the fine-grained relations, i.e., token-to-token and token-to-object relations, between the reserved responses and the multi-modal claim for finding out the valuable clues. Extensive experiments have been conducted on two real-world datasets, and the results demonstrate that our proposed model outperforms all the baselines.

Object detectors usually achieve promising results with the supervision of complete instance annotations. However, their performance is far from satisfactory with sparse instance annotations. Most existing methods for sparsely annotated object detection either re-weight the loss of hard negative samples or convert the unlabeled instances into ignored regions to reduce the interference of false negatives. We argue that these strategies are insufficient since they can at most alleviate the negative effect caused by missing annotations. In this paper, we propose a simple but effective mechanism, called Co-mining, for sparsely annotated object detection. In our Co-mining, two branches of a Siamese network predict the pseudo-label sets for each other. To enhance multi-view learning and better mine unlabeled instances, the original image and corresponding augmented image are used as the inputs of two branches of the Siamese network, respectively. Co-mining can serve as a general training mechanism applied to most of modern object detectors. Experiments are performed on MS COCO dataset with three different sparsely annotated settings using two typical frameworks: anchor-based detector RetinaNet and anchor-free detector FCOS. Experimental results show that our Co-mining with RetinaNet achieves 1.4%~2.1% improvements compared with different baselines and surpasses existing methods under the same sparsely annotated setting.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司