This work aims to explore the community structure of Santiago de Chile by analyzing the movement patterns of its residents. We use a dataset containing the approximate locations of home and work places for a subset of anonymized residents to construct a network that represents the movement patterns within the city. Through the analysis of this network, we aim to identify the communities or sub-cities that exist within Santiago de Chile and gain insights into the factors that drive the spatial organization of the city. We employ modularity optimization algorithms and clustering techniques to identify the communities within the network. Our results present that the novelty of combining community detection algorithms with segregation tools provides new insights to further the understanding of the complex geography of segregation during working hours.
Contraction in Wasserstein 1-distance with explicit rates is established for generalized Hamiltonian Monte Carlo with stochastic gradients under possibly nonconvex conditions. The algorithms considered include splitting schemes of kinetic Langevin diffusion. As consequence, quantitative Gaussian concentration bounds are provided for empirical averages. Convergence in Wasserstein 2-distance, total variation and relative entropy are also given, together with numerical bias estimates.
We consider a queuing network that opens at a specified time, where customers are non-atomic and belong to different classes. Each class has its own route, and as is typical in the literature, the costs are a linear function of waiting and service completion time. We restrict ourselves to a two class, two queue network: this simplification is well motivated as the diversity in solution structure as a function of problem parameters is substantial even in this simple setting (e.g., a specific routing structure involves eight different regimes), suggesting a combinatorial blow up as the number of queues, routes and customer classes increase. We identify the unique Nash equilibrium customer arrival profile when the customer linear cost preferences are different. This profile is a function of problem parameters including the size of each class, service rates at each queue, and customer cost preferences. When customer cost preferences match, under certain parametric settings, the equilibrium arrival profiles may not be unique and may lie in a convex set. We further make a surprising observation that in some parametric settings, customers in one class may arrive in disjoint intervals. Further, the two classes may arrive in contiguous intervals or in overlapping intervals, and at varying rates within an interval, depending upon the problem parameters.
Scientists continue to develop increasingly complex mechanistic models to reflect their knowledge more realistically. Statistical inference using these models can be challenging since the corresponding likelihood function is often intractable and model simulation may be computationally burdensome. Fortunately, in many of these situations, it is possible to adopt a surrogate model or approximate likelihood function. It may be convenient to conduct Bayesian inference directly with the surrogate, but this can result in bias and poor uncertainty quantification. In this paper we propose a new method for adjusting approximate posterior samples to reduce bias and produce more accurate uncertainty quantification. We do this by optimizing a transform of the approximate posterior that maximizes a scoring rule. Our approach requires only a (fixed) small number of complex model simulations and is numerically stable. We demonstrate good performance of the new method on several examples of increasing complexity.
Ensemble forecasts and their combination are explored from the perspective of a probability space. Manipulating ensemble forecasts as discrete probability distributions, multi-model ensembles (MMEs) are reformulated as barycenters of these distributions. Barycenters are defined with respect to a given distance. The barycenter with respect to the L2-distance is shown to be equivalent to the pooling method. Then, the barycenter-based approach is extended to a different distance with interesting properties in the distribution space: the Wasserstein distance. Another interesting feature of the barycenter approach is the possibility to give different weights to the ensembles and so to naturally build weighted MME. As a proof of concept, the L2- and the Wasserstein-barycenters are applied to combine two models from the S2S database, namely the European Centre Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) models. The performance of the two (weighted-) MMEs are evaluated for the prediction of weekly 2m-temperature over Europe for seven winters. The weights given to the models in the barycenters are optimized with respect to two metrics, the CRPS and the proportion of skilful forecasts. These weights have an important impact on the skill of the two barycenter-based MMEs. Although the ECMWF model has an overall better performance than NCEP, the barycenter-ensembles are generally able to outperform both. However, the best MME method, but also the weights, are dependent on the metric. These results constitute a promising first implementation of this methodology before moving to combination of more models.
We introduce a convergent hierarchy of lower bounds on the minimum value of a real homogeneous polynomial over the sphere. The main practical advantage of our hierarchy over the sum-of-squares (SOS) hierarchy is that the lower bound at each level of our hierarchy is obtained by a minimum eigenvalue computation, as opposed to the full semidefinite program (SDP) required at each level of SOS. In practice, this allows us to go to much higher levels than are computationally feasible for the SOS hierarchy. For both hierarchies, the underlying space at the $k$-th level is the set of homogeneous polynomials of degree $2k$. We prove that our hierarchy converges as $O(1/k)$ in the level $k$, matching the best-known convergence of the SOS hierarchy when the number of variables $n$ is less than the half-degree $d$ (the best-known convergence of SOS when $n \geq d$ is $O(1/k^2)$). More generally, we introduce a convergent hierarchy of minimum eigenvalue computations for minimizing the inner product between a real tensor and an element of the spherical Segre-Veronese variety, with similar convergence guarantees. As examples, we obtain hierarchies for computing the (real) tensor spectral norm, and for minimizing biquadratic forms over the sphere. Hierarchies of eigencomputations for more general constrained polynomial optimization problems are discussed.
We propose here selected actual features of measurement problems based on our concerns in our respective fields of research. Their technical similarity in apparently disconnected fields motivate this common communication. Problems of coherence and consistency, correlation, randomness and uncertainty are exposed in various fields including physics, decision theory and game theory, while the underlying mathematical structures are very similar.
Generative diffusion models have achieved spectacular performance in many areas of generative modeling. While the fundamental ideas behind these models come from non-equilibrium physics, in this paper we show that many aspects of these models can be understood using the tools of equilibrium statistical mechanics. Using this reformulation, we show that generative diffusion models undergo second-order phase transitions corresponding to symmetry breaking phenomena. We argue that this lead to a form of instability that lies at the heart of their generative capabilities and that can be described by a set of mean field critical exponents. We conclude by analyzing recent work connecting diffusion models and associative memory networks in view of the thermodynamic formulations.
When multiple self-adaptive systems share the same environment and have common goals, they may coordinate their adaptations at runtime to avoid conflicts and to satisfy their goals. There are two approaches to coordination. (1) Logically centralized, where a supervisor has complete control over the individual self-adaptive systems. Such approach is infeasible when the systems have different owners or administrative domains. (2) Logically decentralized, where coordination is achieved through direct interactions. Because the individual systems have control over the information they share, decentralized coordination accommodates multiple administrative domains. However, existing techniques do not account simultaneously for both local concerns, e.g., preferences, and shared concerns, e.g., conflicts, which may lead to goals not being achieved as expected. Our idea to address this shortcoming is to express both types of concerns within the same constraint optimization problem. We propose CoADAPT, a decentralized coordination technique introducing two types of constraints: preference constraints, expressing local concerns, and consistency constraints, expressing shared concerns. At runtime, the problem is solved in a decentralized way using distributed constraint optimization algorithms implemented by each self-adaptive system. As a first step in realizing CoADAPT, we focus in this work on the coordination of adaptation planning strategies, traditionally addressed only with centralized techniques. We show the feasibility of CoADAPT in an exemplar from cloud computing and analyze experimentally its scalability.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.