Image harmonization aims at adjusting the appearance of the foreground to make it more compatible with the background. Without exploring background illumination and its effects on the foreground elements, existing works are incapable of generating a realistic foreground shading. In this paper, we decompose the image harmonization task into two sub-problems: 1) illumination estimation of the background image and 2) re-rendering of foreground objects under background illumination. Before solving these two sub-problems, we first learn a shading-aware illumination descriptor via a well-designed neural rendering framework, of which the key is a shading bases module that generates multiple shading bases from the foreground image. Then we design a background illumination estimation module to extract the illumination descriptor from the background. Finally, the Shading-aware Illumination Descriptor is used in conjunction with the neural rendering framework (SIDNet) to produce the harmonized foreground image containing a novel harmonized shading. Moreover, we construct a photo-realistic synthetic image harmonization dataset that contains numerous shading variations with image-based lighting. Extensive experiments on both synthetic and real data demonstrate the superiority of the proposed method, especially in dealing with foreground shadings.
Due to the stochastic nature of events, predicting the duration of a traffic incident presents a formidable challenge. Accurate duration estimation can result in substantial advantages for commuters in selecting optimal routes and for traffic management personnel in addressing non-recurring congestion issues. In this study, we gathered accident duration, road conditions, and meteorological data from a database of traffic accidents to check the feasibility of a traffic accident duration pipeline without accident contextual information data like accident severity and textual description. Multiple machine learning models were employed to predict whether an accident's impact on road traffic would be of a short-term or long-term nature, and then utilizing a bimodal approach the precise duration of the incident's effect was determined. Our binary classification random forest model distinguished between short-term and long-term effects with an 83% accuracy rate, while the LightGBM regression model outperformed other machine learning regression models with Mean Average Error (MAE) values of 26.15 and 13.3 and RMSE values of 32.91 and 28.91 for short and long-term accident duration prediction, respectively. Using the optimal classification and regression model identified in the preceding section, we then construct an end-to-end pipeline to incorporate the entire process. The results of both separate and combined approaches were comparable with previous works, which shows the applicability of only using static features for predicting traffic accident duration. The SHAP value analysis identified weather conditions, wind chill and wind speed as the most influential factors in determining the duration of an accident.
The rapid advancement of Generative Adversarial Networks (GANs) necessitates the need to robustly evaluate these models. Among the established evaluation criteria, the Fr\'{e}chet Inception Distance (FID) has been widely adopted due to its conceptual simplicity, fast computation time, and strong correlation with human perception. However, FID has inherent limitations, mainly stemming from its assumption that feature embeddings follow a Gaussian distribution, and therefore can be defined by their first two moments. As this does not hold in practice, in this paper we explore the importance of third-moments in image feature data and use this information to define a new measure, which we call the Skew Inception Distance (SID). We prove that SID is a pseudometric on probability distributions, show how it extends FID, and present a practical method for its computation. Our numerical experiments support that SID either tracks with FID or, in some cases, aligns more closely with human perception when evaluating image features of ImageNet data.
Large multimodal models demonstrate remarkable generalist ability to perform diverse multimodal tasks in a zero-shot manner. Large-scale web-based image-text pairs contribute fundamentally to this success, but suffer from excessive noise. Recent studies use alternative captions synthesized by captioning models and have achieved notable benchmark performance. However, our experiments reveal significant Scalability Deficiency and World Knowledge Loss issues in models trained with synthetic captions, which have been largely obscured by their initial benchmark success. Upon closer examination, we identify the root cause as the overly-simplified language structure and lack of knowledge details in existing synthetic captions. To provide higher-quality and more scalable multimodal pretraining data, we propose CapsFusion, an advanced framework that leverages large language models to consolidate and refine information from both web-based image-text pairs and synthetic captions. Extensive experiments show that CapsFusion captions exhibit remarkable all-round superiority over existing captions in terms of model performance (e.g., 18.8 and 18.3 improvements in CIDEr score on COCO and NoCaps), sample efficiency (requiring 11-16 times less computation than baselines), world knowledge depth, and scalability. These effectiveness, efficiency and scalability advantages position CapsFusion as a promising candidate for future scaling of LMM training.
As deep learning models become increasingly large, they pose significant challenges in heterogeneous devices environments. The size of deep learning models makes it difficult to deploy them on low-power or resource-constrained devices, leading to long inference times and high energy consumption. To address these challenges, we propose FlexTrain, a framework that accommodates the diverse storage and computational resources available on different devices during the training phase. FlexTrain enables efficient deployment of deep learning models, while respecting device constraints, minimizing communication costs, and ensuring seamless integration with diverse devices. We demonstrate the effectiveness of FlexTrain on the CIFAR-100 dataset, where a single global model trained with FlexTrain can be easily deployed on heterogeneous devices, saving training time and energy consumption. We also extend FlexTrain to the federated learning setting, showing that our approach outperforms standard federated learning benchmarks on both CIFAR-10 and CIFAR-100 datasets.
Most of the current deep learning-based approaches for speech enhancement only operate in the spectrogram or waveform domain. Although a cross-domain transformer combining waveform- and spectrogram-domain inputs has been proposed, its performance can be further improved. In this paper, we present a novel deep complex hybrid transformer that integrates both spectrogram and waveform domains approaches to improve the performance of speech enhancement. The proposed model consists of two parts: a complex Swin-Unet in the spectrogram domain and a dual-path transformer network (DPTnet) in the waveform domain. We first construct a complex Swin-Unet network in the spectrogram domain and perform speech enhancement in the complex audio spectrum. We then introduce improved DPT by adding memory-compressed attention. Our model is capable of learning multi-domain features to reduce existing noise on different domains in a complementary way. The experimental results on the BirdSoundsDenoising dataset and the VCTK+DEMAND dataset indicate that our method can achieve better performance compared to state-of-the-art methods.
Navigating the landscape of particle accelerators has become increasingly challenging with recent surges in contributions. These intricate devices challenge comprehension, even within individual facilities. To address this, we introduce PACuna, a fine-tuned language model refined through publicly available accelerator resources like conferences, pre-prints, and books. We automated data collection and question generation to minimize expert involvement and make the data publicly available. PACuna demonstrates proficiency in addressing intricate accelerator questions, validated by experts. Our approach shows adapting language models to scientific domains by fine-tuning technical texts and auto-generated corpora capturing the latest developments can further produce pre-trained models to answer some intricate questions that commercially available assistants cannot and can serve as intelligent assistants for individual facilities.
Zero-shot entity linking (EL) aims at aligning entity mentions to unseen entities to challenge the generalization ability. Previous methods largely focus on the candidate retrieval stage and ignore the essential candidate ranking stage, which disambiguates among entities and makes the final linking prediction. In this paper, we propose a read-and-select (ReS) framework by modeling the main components of entity disambiguation, i.e., mention-entity matching and cross-entity comparison. First, for each candidate, the reading module leverages mention context to output mention-aware entity representations, enabling mention-entity matching. Then, in the selecting module, we frame the choice of candidates as a sequence labeling problem, and all candidate representations are fused together to enable cross-entity comparison. Our method achieves the state-of-the-art performance on the established zero-shot EL dataset ZESHEL with a 2.55% micro-average accuracy gain, with no need for laborious multi-phase pre-training used in most of the previous work, showing the effectiveness of both mention-entity and cross-entity interaction.
We present ASPIRO, an approach for structured data verbalisation into short template sentences in zero to few-shot settings. Unlike previous methods, our approach prompts large language models (LLMs) to directly produce entity-agnostic templates, rather than relying on LLMs to faithfully copy the given example entities, or validating/crafting the templates manually. We incorporate LLM re-prompting, triggered by algorithmic parsing checks, as well as the PARENT metric induced consistency validation to identify and rectify template generation problems in real-time. ASPIRO, compared to direct LLM output, averages 66\% parsing error rate reduction in generated verbalisations of RDF triples on the DART dataset. Our best 5-shot text-davinci-003 setup, scoring BLEU of 50.62, METEOR of 45.16, BLEURT of 0.82, NUBIA of 0.87, and PARENT of 0.8962 on the Rel2Text dataset, competes effectively with recent fine-tuned pre-trained language models.
Unsupervised semantic segmentation is a challenging task that segments images into semantic groups without manual annotation. Prior works have primarily focused on leveraging prior knowledge of semantic consistency or priori concepts from self-supervised learning methods, which often overlook the coherence property of image segments. In this paper, we demonstrate that the smoothness prior, asserting that close features in a metric space share the same semantics, can significantly simplify segmentation by casting unsupervised semantic segmentation as an energy minimization problem. Under this paradigm, we propose a novel approach called SmooSeg that harnesses self-supervised learning methods to model the closeness relationships among observations as smoothness signals. To effectively discover coherent semantic segments, we introduce a novel smoothness loss that promotes piecewise smoothness within segments while preserving discontinuities across different segments. Additionally, to further enhance segmentation quality, we design an asymmetric teacher-student style predictor that generates smoothly updated pseudo labels, facilitating an optimal fit between observations and labeling outputs. Thanks to the rich supervision cues of the smoothness prior, our SmooSeg significantly outperforms STEGO in terms of pixel accuracy on three datasets: COCOStuff (+14.9%), Cityscapes (+13.0%), and Potsdam-3 (+5.7%).
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.