亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

High-order entropy-stable discontinuous Galerkin methods for the compressible Euler and Navier-Stokes equations require the positivity of thermodynamic quantities in order to guarantee their well-posedness. In this work, we introduce a positivity limiting strategy for entropy-stable discontinuous Galerkin discretizations constructed by blending high order solutions with a low order positivity-preserving discretization. The proposed low order discretization is semi-discretely entropy stable, and the proposed limiting strategy is positivity preserving for the compressible Euler and Navier-Stokes equations. Numerical experiments confirm the high order accuracy and robustness of the proposed strategy.

相關內容

We introduce two synthetic likelihood methods for Simulation-Based Inference (SBI), to conduct either amortized or targeted inference from experimental observations when a high-fidelity simulator is available. Both methods learn a conditional energy-based model (EBM) of the likelihood using synthetic data generated by the simulator, conditioned on parameters drawn from a proposal distribution. The learned likelihood can then be combined with any prior to obtain a posterior estimate, from which samples can be drawn using MCMC. Our methods uniquely combine a flexible Energy-Based Model and the minimization of a KL loss: this is in contrast to other synthetic likelihood methods, which either rely on normalizing flows, or minimize score-based objectives; choices that come with known pitfalls. Our first method, Amortized Unnormalized Neural Likelihood Estimation (AUNLE), introduces a tilting trick during training that allows to significantly lower the computational cost of inference by enabling the use of efficient MCMC techniques. Our second method, Sequential UNLE (SUNLE), employs a robust doubly intractable approach in order to re-use simulation data and improve posterior accuracy on a specific dataset. We demonstrate the properties of both methods on a range of synthetic datasets, and apply them to a neuroscience model of the pyloric network in the crab Cancer Borealis, matching the performance of other synthetic likelihood methods at a fraction of the simulation budget.

We consider the problem of finding the matching map between two sets of $d$ dimensional vectors from noisy observations, where the second set contains outliers. The matching map is then an injection, which can be consistently estimated only if the vectors of the second set are well separated. The main result shows that, in the high-dimensional setting, a detection region of unknown injection can be characterized by the sets of vectors for which the inlier-inlier distance is of order at least $d^{1/4}$ and the inlier-outlier distance is of order at least $d^{1/2}$. These rates are achieved using the estimated matching minimizing the sum of logarithms of distances between matched pairs of points. We also prove lower bounds establishing optimality of these rates. Finally, we report results of numerical experiments on both synthetic and real world data that illustrate our theoretical results and provide further insight into the properties of the estimators studied in this work.

We propose a verified computation method for eigenvalues in a region and the corresponding eigenvectors of generalized Hermitian eigenvalue problems. The proposed method uses complex moments to extract the eigencomponents of interest from a random matrix and uses the Rayleigh$\unicode{x2013}$Ritz procedure to project a given eigenvalue problem into a reduced eigenvalue problem. The complex moment is given by contour integral and approximated using numerical quadrature. We split the error in the complex moment into the truncation error of the quadrature and rounding errors and evaluate each. This idea for error evaluation inherits our previous Hankel matrix approach, whereas the proposed method enables verification of eigenvectors and requires half the number of quadrature points for the previous approach to reduce the truncation error to the same order. Moreover, the Rayleigh$\unicode{x2013}$Ritz procedure approach forms a transformation matrix that enables verification of the eigenvectors. Numerical experiments show that the proposed method is faster than previous methods while maintaining verification performance and works even for nearly singular matrix pencils and in the presence of multiple and nearly multiple eigenvalues.

We develop a hybrid spatial discretization for the wave equation in second order form, based on high-order accurate finite difference methods and discontinuous Galerkin methods. The hybridization combines computational efficiency of finite difference methods on Cartesian grids and geometrical flexibility of discontinuous Galerkin methods on unstructured meshes. The two spatial discretizations are coupled by a penalty technique at the interface such that the overall semidiscretization satisfies a discrete energy estimate to ensure stability. In addition, optimal convergence is obtained in the sense that when combining a fourth order finite difference method with a discontinuous Galerkin method using third order local polynomials, the overall convergence rate is fourth order. Furthermore, we use a novel approach to derive an error estimate for the semidiscretization by combining the energy method and the normal mode analysis for a corresponding one dimensional model problem. The stability and accuracy analysis are verified in numerical experiments.

The local discontinuous Galerkin (LDG) method is studied for a third-order singularly perturbed problem of the convection-diffusion type. Based on a regularity assumption for the exact solution, we prove almost $O(N^{-(k+1/2)})$ (up to a logarithmic factor) energy-norm convergence uniformly in the perturbation parameter. Here, $k\geq 0$ is the maximum degree of piecewise polynomials used in discrete space, and $N$ is the number of mesh elements. The results are valid for the three types of layer-adapted meshes: Shishkin-type, Bakhvalov-Shishkin type, and Bakhvalov-type. Numerical experiments are conducted to test the theoretical results.

The quadrature-based method of moments (QMOM) offers a promising class of approximation techniques for reducing kinetic equations to fluid equations that are valid beyond thermodynamic equilibrium. In this work, we study a particular five-moment variant of QMOM known as HyQMOM and establish that this system is moment-invertible over a convex region in solution space. We then develop a high-order discontinuous Galerkin (DG) scheme for solving the resulting fluid system. The scheme is based on a predictor-corrector approach, where the prediction is a localized space-time DG scheme. The nonlinear algebraic system in this prediction is solved using a Picard iteration. The correction is a straightforward explicit update based on the time-integral of the evolution equation, where the space-time prediction replaces all instances of the exact solution. In the absence of limiters, the high-order scheme does not guarantee that solutions remain in the convex set over which HyQMOM is moment-realizable. To overcome this, we introduce novel limiters that rigorously guarantee that the computed solution does not leave the convex set of realizable solutions, thus guaranteeing the hyperbolicity of the system. We develop positivity-preserving limiters in both the prediction and correction steps and an oscillation limiter that damps unphysical oscillations near shocks. We also develop a novel extension of this scheme to include a BGK collision operator; the proposed method is shown to be asymptotic-preserving in the high-collision limit. The HyQMOM and the HyQMOM-BGK solvers are verified on several test cases, demonstrating high-order accuracy on smooth problems and shock-capturing capability on problems with shocks. The asymptotic-preserving property of the HyQMOM-BGK solver is also numerically verified.

This paper investigates, a new class of fractional order Runge-Kutta (FORK) methods for numerical approximation to the solution of fractional differential equations (FDEs). By using the Caputo generalized Taylor formula and the total differential for Caputo fractional derivative, we construct explicit and implicit FORK methods, as the well-known Runge-Kutta schemes for ordinary differential equations. In the proposed method, due to the dependence of fractional derivatives to a fixed base point $t_0,$ we had to modify the right-hand side of the given equation in all steps of the FORK methods. Some coefficients for explicit and implicit FORK schemes are presented. The convergence analysis of the proposed method is also discussed. Numerical experiments clarify the effectiveness and robustness of the method.

Imposition methods of interface conditions for the second-order wave equation with non-conforming grids is considered. The spatial discretization is based on high order finite differences with summation-by-parts properties. Previously presented solution methods for this problem, based on the simultaneous approximation term (SAT) method, have shown to introduce significant stiffness. This can lead to highly inefficient schemes. Here, two new methods of imposing the interface conditions to avoid the stiffness problems are presented: 1) a projection method and 2) a hybrid between the projection method and the SAT method. Numerical experiments are performed using traditional and order-preserving interpolation operators. Both of the novel methods retain the accuracy and convergence behavior of the previously developed SAT method but are significantly less stiff.

We study a class of nonlinear eigenvalue problems of Schr\"{o}dinger type, where the potential is singular on a set of points. Such problems are widely present in physics and chemistry, and their analysis is of both theoretical and practical interest. In particular, we study the regularity of the eigenfunctions of the operators considered, and we propose and analyze the approximation of the solution via an isotropically refined $hp$ discontinuous Galerkin (dG) method. We show that, for weighted analytic potentials and for up-to-quartic polynomial nonlinearities, the eigenfunctions belong to analytic-type non homogeneous weighted Sobolev spaces. We also prove quasi optimal a priori estimates on the error of the dG finite element method; when using an isotropically refined $hp$ space the numerical solution is shown to converge with exponential rate towards the exact eigenfunction. We conclude with a series of numerical tests to validate the theoretical results.

The paper proposes a decoupled numerical scheme of the time-dependent Ginzburg-Landau equations under temporal gauge. For the order parameter and the magnetic potential, the discrete scheme adopts the second type Ned${\rm \acute{e}}$lec element and the linear element for spatial discretization, respectively, and a fully linearized backward Euler method and the first order exponential time differencing method for time discretization, respectively. The maximum bound principle of the order parameter and the energy dissipation law in the discrete sense are proved for this finite element-based scheme. This allows the application of the adaptive time stepping method which can significantly speed up long-time simulations compared to existing numerical schemes, especially for superconductors with complicated shapes. The error estimate is rigorously established in the fully discrete sense. Numerical examples verify the theoretical results of the proposed scheme and demonstrate the vortex motions of superconductors in an external magnetic field.

北京阿比特科技有限公司