亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To train image-caption retrieval (ICR) methods, contrastive loss functions are a common choice for optimization functions. Unfortunately, contrastive ICR methods are vulnerable to predictive feature suppression. Predictive features are features that correctly indicate the similarity between a query and a candidate item. However, in the presence of multiple predictive features during training, encoder models tend to suppress redundant predictive features, since these features are not needed to learn to discriminate between positive and negative pairs. While some predictive features are redundant during training, these features might be relevant during evaluation. We introduce an approach to reduce predictive feature suppression for resource-constrained ICR methods: latent target decoding (LTD). We add an additional decoder to the contrastive ICR framework, to reconstruct the input caption in a latent space of a general-purpose sentence encoder, which prevents the image and caption encoder from suppressing predictive features. We implement the LTD objective as an optimization constraint, to ensure that the reconstruction loss is below a bound value while primarily optimizing for the contrastive loss. Importantly, LTD does not depend on additional training data or expensive (hard) negative mining strategies. Our experiments show that, unlike reconstructing the input caption in the input space, LTD reduces predictive feature suppression, measured by obtaining higher recall@k, r-precision, and nDCG scores than a contrastive ICR baseline. Moreover, we show that LTD should be implemented as an optimization constraint instead of a dual optimization objective. Finally, we show that LTD can be used with different contrastive learning losses and a wide variety of resource-constrained ICR methods.

相關內容

Part-based approaches for fine-grained recognition do not show the expected performance gain over global methods, although explicitly focusing on small details that are relevant for distinguishing highly similar classes. We assume that part-based methods suffer from a missing representation of local features, which is invariant to the order of parts and can handle a varying number of visible parts appropriately. The order of parts is artificial and often only given by ground-truth annotations, whereas viewpoint variations and occlusions result in not observable parts. Therefore, we propose integrating a Fisher vector encoding of part features into convolutional neural networks. The parameters for this encoding are estimated by an online EM algorithm jointly with those of the neural network and are more precise than the estimates of previous works. Our approach improves state-of-the-art accuracies for three bird species classification datasets.

The relations expressed in user queries are vital for cross-modal information retrieval. Relation-focused cross-modal retrieval aims to retrieve information that corresponds to these relations, enabling effective retrieval across different modalities. Pre-trained networks, such as Contrastive Language-Image Pre-training (CLIP), have gained significant attention and acclaim for their exceptional performance in various cross-modal learning tasks. However, the Vision Transformer (ViT) used in these networks is limited in its ability to focus on image region relations. Specifically, ViT is trained to match images with relevant descriptions at the global level, without considering the alignment between image regions and descriptions. This paper introduces VITR, a novel network that enhances ViT by extracting and reasoning about image region relations based on a local encoder. VITR is comprised of two key components. Firstly, it extends the capabilities of ViT-based cross-modal networks by enabling them to extract and reason with region relations present in images. Secondly, VITR incorporates a fusion module that combines the reasoned results with global knowledge to predict similarity scores between images and descriptions. The proposed VITR network was evaluated through experiments on the tasks of relation-focused cross-modal information retrieval. The results derived from the analysis of the RefCOCOg, CLEVR, and Flickr30K datasets demonstrated that the proposed VITR network consistently outperforms state-of-the-art networks in image-to-text and text-to-image retrieval.

Training an image captioner without annotated image-sentence pairs has gained traction in recent years. Previous approaches can be categorized into two strategies: crawling sentences from mismatching corpora and aligning them with the given images as pseudo annotations, or pre-training the captioner using external image-text pairs. However, the aligning setting seems to reach its performance limit due to the quality problem of pairs, and pre-training requires significant computational resources. To address these challenges, we propose a new strategy ``LPM + retrieval-augmented learning" where the prior knowledge from large pre-trained models (LPMs) is leveraged as supervision, and a retrieval process is integrated to further reinforce its effectiveness. Specifically, we introduce Retrieval-augmented Pseudo Sentence Generation (RaPSG), which adopts an efficient approach to retrieve highly relevant short region descriptions from the mismatching corpora and use them to generate a variety of pseudo sentences with distinct representations as well as high quality via LPMs. In addition, a fluency filter and a CLIP-guided training objective are further introduced to facilitate model optimization. Experimental results demonstrate that our method surpasses the SOTA pre-training model (Flamingo3B) by achieving a CIDEr score of 78.1 (+5.1) while utilizing only 0.3% of its trainable parameters (1.3B VS 33M). Importantly, our approach eliminates the need of computationally expensive pre-training processes on external datasets (e.g., the requirement of 312M image-text pairs for Flamingo3B). We further show that with a simple extension, the generated pseudo sentences can be deployed as weak supervision to boost the 1% semi-supervised image caption benchmark up to 93.4 CIDEr score (+8.9) which showcases the versatility and effectiveness of our approach.

Recent work in Machine Learning and Computer Vision has highlighted the presence of various types of systematic flaws inside ground truth object recognition benchmark datasets. Our basic tenet is that these flaws are rooted in the many-to-many mappings which exist between the visual information encoded in images and the intended semantics of the labels annotating them. The net consequence is that the current annotation process is largely under-specified, thus leaving too much freedom to the subjective judgment of annotators. In this paper, we propose vTelos, an integrated Natural Language Processing, Knowledge Representation, and Computer Vision methodology whose main goal is to make explicit the (otherwise implicit) intended annotation semantics, thus minimizing the number and role of subjective choices. A key element of vTelos is the exploitation of the WordNet lexico-semantic hierarchy as the main means for providing the meaning of natural language labels and, as a consequence, for driving the annotation of images based on the objects and the visual properties they depict. The methodology is validated on images populating a subset of the ImageNet hierarchy.

Generative Adversarial Networks (GAN) have emerged as a formidable AI tool to generate realistic outputs based on training datasets. However, the challenge of exerting control over the generation process of GANs remains a significant hurdle. In this paper, we propose a novel methodology to address this issue by integrating a reinforcement learning (RL) agent with a latent-space GAN (l-GAN), thereby facilitating the generation of desired outputs. More specifically, we have developed an actor-critic RL agent with a meticulously designed reward policy, enabling it to acquire proficiency in navigating the latent space of the l-GAN and generating outputs based on specified tasks. To substantiate the efficacy of our approach, we have conducted a series of experiments employing the MNIST dataset, including arithmetic addition as an illustrative task. The outcomes of these experiments serve to validate our methodology. Our pioneering integration of an RL agent with a GAN model represents a novel advancement, holding great potential for enhancing generative networks in the future.

We present prompt distribution learning for effectively adapting a pre-trained vision-language model to address downstream recognition tasks. Our method not only learns low-bias prompts from a few samples but also captures the distribution of diverse prompts to handle the varying visual representations. In this way, we provide high-quality task-related content for facilitating recognition. This prompt distribution learning is realized by an efficient approach that learns the output embeddings of prompts instead of the input embeddings. Thus, we can employ a Gaussian distribution to model them effectively and derive a surrogate loss for efficient training. Extensive experiments on 12 datasets demonstrate that our method consistently and significantly outperforms existing methods. For example, with 1 sample per category, it relatively improves the average result by 9.1% compared to human-crafted prompts.

The core of information retrieval (IR) is to identify relevant information from large-scale resources and return it as a ranked list to respond to user's information need. Recently, the resurgence of deep learning has greatly advanced this field and leads to a hot topic named NeuIR (i.e., neural information retrieval), especially the paradigm of pre-training methods (PTMs). Owing to sophisticated pre-training objectives and huge model size, pre-trained models can learn universal language representations from massive textual data, which are beneficial to the ranking task of IR. Since there have been a large number of works dedicating to the application of PTMs in IR, we believe it is the right time to summarize the current status, learn from existing methods, and gain some insights for future development. In this survey, we present an overview of PTMs applied in different components of IR system, including the retrieval component, the re-ranking component, and other components. In addition, we also introduce PTMs specifically designed for IR, and summarize available datasets as well as benchmark leaderboards. Moreover, we discuss some open challenges and envision some promising directions, with the hope of inspiring more works on these topics for future research.

Multi-stage ranking pipelines have been a practical solution in modern search systems, where the first-stage retrieval is to return a subset of candidate documents, and latter stages attempt to re-rank those candidates. Unlike re-ranking stages going through quick technique shifts during past decades, the first-stage retrieval has long been dominated by classical term-based models. Unfortunately, these models suffer from the vocabulary mismatch problem, which may block re-ranking stages from relevant documents at the very beginning. Therefore, it has been a long-term desire to build semantic models for the first-stage retrieval that can achieve high recall efficiently. Recently, we have witnessed an explosive growth of research interests on the first-stage semantic retrieval models. We believe it is the right time to survey current status, learn from existing methods, and gain some insights for future development. In this paper, we describe the current landscape of the first-stage retrieval models under a unified framework to clarify the connection between classical term-based retrieval methods, early semantic retrieval methods and neural semantic retrieval methods. Moreover, we identify some open challenges and envision some future directions, with the hope of inspiring more researches on these important yet less investigated topics.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at //github.com/2051/RSICD_optimal

北京阿比特科技有限公司