亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite the increasing popularity of Decentralized Applications (DApps), they are suffering from various vulnerabilities that can be exploited by adversaries for profits. Among such vulnerabilities, Read-Only Reentrancy (called ROR in this paper), is an emerging type of vulnerability that arises from the complex interactions between DApps. In the recent three years, attack incidents of ROR have already caused around 30M USD losses to the DApp ecosystem. Existing techniques for vulnerability detection in smart contracts can hardly detect Read-Only Reentrancy attacks, due to the lack of tracking and analyzing the complex interactions between multiple DApps. In this paper, we propose SmartReco, a new framework for detecting Read-Only Reentrancy vulnerability in DApps through a novel combination of static and dynamic analysis (i.e., fuzzing) over smart contracts. The key design behind SmartReco is threefold: (1) SmartReco identifies the boundary between different DApps from the heavy-coupled cross-contract interactions. (2) SmartReco performs fine-grained static analysis to locate points of interest (i.e., entry functions) that may lead to ROR. (3) SmartReco utilizes the on-chain transaction data and performs multi-function fuzzing (i.e., the entry function and victim function) across different DApps to verify the existence of ROR. Our evaluation of a manual-labeled dataset with 45 RORs shows that SmartReco achieves a precision of 88.63% and a recall of 86.36%. In addition, SmartReco successfully detects 43 new RORs from 123 popular DApps. The total assets affected by such RORs reach around 520,000 USD.

相關內容

Preference optimization, particularly through Reinforcement Learning from Human Feedback (RLHF), has achieved significant success in aligning Large Language Models (LLMs) to adhere to human intentions. Unlike offline alignment with a fixed dataset, online feedback collection from humans or AI on model generations typically leads to more capable reward models and better-aligned LLMs through an iterative process. However, achieving a globally accurate reward model requires systematic exploration to generate diverse responses that span the vast space of natural language. Random sampling from standard reward-maximizing LLMs alone is insufficient to fulfill this requirement. To address this issue, we propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions. By solving the inner-level problem with the reparameterized reward function, the resulting algorithm, named Self-Exploring Language Models (SELM), eliminates the need for a separate RM and iteratively updates the LLM with a straightforward objective. Compared to Direct Preference Optimization (DPO), the SELM objective reduces indiscriminate favor of unseen extrapolations and enhances exploration efficiency. Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, SELM significantly boosts the performance on instruction-following benchmarks such as MT-Bench and AlpacaEval 2.0, as well as various standard academic benchmarks in different settings. Our code and models are available at //github.com/shenao-zhang/SELM.

Recently, there has been increasing interest in using Large Language Models (LLMs) to construct complex multi-agent systems to perform tasks such as compiling literature reviews, drafting consumer reports, and planning vacations. Many tools and libraries exist for helping create such systems, however none support recursive multi-agent systems -- where the models themselves flexibly decide when to delegate tasks and how to organize their delegation structure. In this work, we introduce ReDel: a toolkit for recursive multi-agent systems that supports custom tool-use, delegation schemes, event-based logging, and interactive replay in an easy-to-use web interface. We show that, using ReDel, we are able to easily identify potential areas of improvements through the visualization and debugging tools. Our code, documentation, and PyPI package are open-source and free to use under the MIT license at //github.com/zhudotexe/redel.

Discontinuous Named Entity Recognition (DNER) presents a challenging problem where entities may be scattered across multiple non-adjacent tokens, making traditional sequence labelling approaches inadequate. Existing methods predominantly rely on custom tagging schemes to handle these discontinuous entities, resulting in models tightly coupled to specific tagging strategies and lacking generalisability across diverse datasets. To address these challenges, we propose TriG-NER, a novel Triplet-Grid Framework that introduces a generalisable approach to learning robust token-level representations for discontinuous entity extraction. Our framework applies triplet loss at the token level, where similarity is defined by word pairs existing within the same entity, effectively pulling together similar and pushing apart dissimilar ones. This approach enhances entity boundary detection and reduces the dependency on specific tagging schemes by focusing on word-pair relationships within a flexible grid structure. We evaluate TriG-NER on three benchmark DNER datasets and demonstrate significant improvements over existing grid-based architectures. These results underscore our framework's effectiveness in capturing complex entity structures and its adaptability to various tagging schemes, setting a new benchmark for discontinuous entity extraction.

Motion-to-music and music-to-motion have been studied separately, each attracting substantial research interest within their respective domains. The interaction between human motion and music is a reflection of advanced human intelligence, and establishing a unified relationship between them is particularly important. However, to date, there has been no work that considers them jointly to explore the modality alignment within. To bridge this gap, we propose a novel framework, termed MoMu-Diffusion, for long-term and synchronous motion-music generation. Firstly, to mitigate the huge computational costs raised by long sequences, we propose a novel Bidirectional Contrastive Rhythmic Variational Auto-Encoder (BiCoR-VAE) that extracts the modality-aligned latent representations for both motion and music inputs. Subsequently, leveraging the aligned latent spaces, we introduce a multi-modal Transformer-based diffusion model and a cross-guidance sampling strategy to enable various generation tasks, including cross-modal, multi-modal, and variable-length generation. Extensive experiments demonstrate that MoMu-Diffusion surpasses recent state-of-the-art methods both qualitatively and quantitatively, and can synthesize realistic, diverse, long-term, and beat-matched music or motion sequences. The generated samples and codes are available at //momu-diffusion.github.io/

LLM agents have the potential to revolutionize defensive cyber operations, but their offensive capabilities are not yet fully understood. To prepare for emerging threats, model developers and governments are evaluating the cyber capabilities of foundation models. However, these assessments often lack transparency and a comprehensive focus on offensive capabilities. In response, we introduce the Catastrophic Cyber Capabilities Benchmark (3CB), a novel framework designed to rigorously assess the real-world offensive capabilities of LLM agents. Our evaluation of modern LLMs on 3CB reveals that frontier models, such as GPT-4o and Claude 3.5 Sonnet, can perform offensive tasks such as reconnaissance and exploitation across domains ranging from binary analysis to web technologies. Conversely, smaller open-source models exhibit limited offensive capabilities. Our software solution and the corresponding benchmark provides a critical tool to reduce the gap between rapidly improving capabilities and robustness of cyber offense evaluations, aiding in the safer deployment and regulation of these powerful technologies.

Equalized odds, as a popular notion of algorithmic fairness, aims to ensure that sensitive variables, such as race and gender, do not unfairly influence the algorithm's prediction when conditioning on the true outcome. Despite rapid advancements, current research primarily focuses on equalized odds violations caused by a single sensitive attribute, leaving the challenge of simultaneously accounting for multiple attributes largely unaddressed. We bridge this gap by introducing an in-processing fairness-aware learning approach, FairICP, which integrates adversarial learning with a novel inverse conditional permutation scheme. FairICP offers a theoretically justified, flexible, and efficient scheme to promote equalized odds under fairness conditions described by complex and multidimensional sensitive attributes. The efficacy and adaptability of our method are demonstrated through both simulation studies and empirical analyses of real-world datasets.

Software vulnerabilities are a fundamental cause of cyber attacks. Effectively identifying these vulnerabilities is essential for robust cybersecurity, yet it remains a complex and challenging task. In this paper, we present SafePyScript, a machine learning-based web application designed specifically to identify vulnerabilities in Python source code. Despite Python's significance as a major programming language, there is currently no convenient and easy-to-use machine learning-based web application for detecting vulnerabilities in its source code. SafePyScript addresses this gap by providing an accessible solution for Python programmers to ensure the security of their applications. SafePyScript link: //safepyscript.com/

Large Language Models (LLMs) have demonstrated remarkable success across a wide range of language tasks, but their deployment on edge devices remains challenging due to the substantial memory requirements imposed by their large parameter sizes. Weight-only quantization presents a promising solution to reduce the memory footprint of LLMs. However, existing approaches primarily focus on integer-bit quantization, limiting their adaptability to fractional-bit quantization tasks and preventing the full utilization of available storage space on devices. In this paper, we introduce Channel-Wise Mixed-Precision Quantization (CMPQ), a novel mixed-precision quantization method that allocates quantization precision in a channel-wise pattern based on activation distributions. By assigning different precision levels to different weight channels, CMPQ can adapt to any bit-width constraint. CMPQ employs a non-uniform quantization strategy and incorporates two outlier extraction techniques that collaboratively preserve the critical information, thereby minimizing the quantization loss. Experiments on different sizes of LLMs demonstrate that CMPQ not only enhances performance in integer-bit quantization tasks but also achieves significant performance gains with a modest increase in memory usage. CMPQ thus represents an adaptive and effective approach to LLM quantization, offering substantial benefits across diverse device capabilities.

Generative Adversarial Networks (GANs) can produce images of surprising complexity and realism, but are generally modeled to sample from a single latent source ignoring the explicit spatial interaction between multiple entities that could be present in a scene. Capturing such complex interactions between different objects in the world, including their relative scaling, spatial layout, occlusion, or viewpoint transformation is a challenging problem. In this work, we propose to model object composition in a GAN framework as a self-consistent composition-decomposition network. Our model is conditioned on the object images from their marginal distributions to generate a realistic image from their joint distribution by explicitly learning the possible interactions. We evaluate our model through qualitative experiments and user evaluations in both the scenarios when either paired or unpaired examples for the individual object images and the joint scenes are given during training. Our results reveal that the learned model captures potential interactions between the two object domains given as input to output new instances of composed scene at test time in a reasonable fashion.

Explainable Recommendation refers to the personalized recommendation algorithms that address the problem of why -- they not only provide the user with the recommendations, but also make the user aware why such items are recommended by generating recommendation explanations, which help to improve the effectiveness, efficiency, persuasiveness, and user satisfaction of recommender systems. In recent years, a large number of explainable recommendation approaches -- especially model-based explainable recommendation algorithms -- have been proposed and adopted in real-world systems. In this survey, we review the work on explainable recommendation that has been published in or before the year of 2018. We first high-light the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation itself in terms of three aspects: 1) We provide a chronological research line of explanations in recommender systems, including the user study approaches in the early years, as well as the more recent model-based approaches. 2) We provide a taxonomy for explainable recommendation algorithms, including user-based, item-based, model-based, and post-model explanations. 3) We summarize the application of explainable recommendation in different recommendation tasks, including product recommendation, social recommendation, POI recommendation, etc. We devote a chapter to discuss the explanation perspectives in the broader IR and machine learning settings, as well as their relationship with explainable recommendation research. We end the survey by discussing potential future research directions to promote the explainable recommendation research area.

北京阿比特科技有限公司