亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A range of complicated real-world problems have inspired the development of several optimization methods. Here, a novel hybrid version of the Ant colony optimization (ACO) method is developed using the sample space reduction technique of the Cohort Intelligence (CI) Algorithm. The algorithm is developed, and accuracy is tested by solving 35 standard benchmark test functions. Furthermore, the constrained version of the algorithm is used to solve two mechanical design problems involving stepped cantilever beams and I-section beams. The effectiveness of the proposed technique of solution is evaluated relative to contemporary algorithmic approaches that are already in use. The results show that our proposed hybrid ACO-CI algorithm will take lesser number of iterations to produce the desired output which means lesser computational time. For the minimization of weight of stepped cantilever beam and deflection in I-section beam a proposed hybrid ACO-CI algorithm yielded best results when compared to other existing algorithms. The proposed work could be investigate for variegated real world applications encompassing domains of engineering, combinatorial and health care problems.

相關內容

Estimating the rigid transformation between two LiDAR scans through putative 3D correspondences is a typical point cloud registration paradigm. Current 3D feature matching approaches commonly lead to numerous outlier correspondences, making outlier-robust registration techniques indispensable. Many recent studies have adopted the branch and bound (BnB) optimization framework to solve the correspondence-based point cloud registration problem globally and deterministically. Nonetheless, BnB-based methods are time-consuming to search the entire 6-dimensional parameter space, since their computational complexity is exponential to the dimension of the solution domain. In order to enhance algorithm efficiency, existing works attempt to decouple the 6 degrees of freedom (DOF) original problem into two 3-DOF sub-problems, thereby reducing the dimension of the parameter space. In contrast, our proposed approach introduces a novel pose decoupling strategy based on residual projections, effectively decomposing the raw problem into three 2-DOF rotation search sub-problems. Subsequently, we employ a novel BnB-based search method to solve these sub-problems, achieving efficient and deterministic registration. Furthermore, our method can be adapted to address the challenging problem of simultaneous pose and correspondence registration (SPCR). Through extensive experiments conducted on synthetic and real-world datasets, we demonstrate that our proposed method outperforms state-of-the-art methods in terms of efficiency, while simultaneously ensuring robustness.

Spiking Neural Networks (SNNs) have attracted recent interest due to their energy efficiency and biological plausibility. However, the performance of SNNs still lags behind traditional Artificial Neural Networks (ANNs), as there is no consensus on the best learning algorithm for SNNs. Best-performing SNNs are based on ANN to SNN conversion or learning with spike-based backpropagation through surrogate gradients. The focus of recent research has been on developing and testing different learning strategies, with hand-tailored architectures and parameter tuning. Neuroevolution (NE), has proven successful as a way to automatically design ANNs and tune parameters, but its applications to SNNs are still at an early stage. DENSER is a NE framework for the automatic design and parametrization of ANNs, based on the principles of Genetic Algorithms (GA) and Structured Grammatical Evolution (SGE). In this paper, we propose SPENSER, a NE framework for SNN generation based on DENSER, for image classification on the MNIST and Fashion-MNIST datasets. SPENSER generates competitive performing networks with a test accuracy of 99.42% and 91.65% respectively.

Submodularity in combinatorial optimization has been a topic of many studies and various algorithmic techniques exploiting submodularity of a studied problem have been proposed. It is therefore natural to ask, in cases where the cost function of the studied problem is not submodular, whether it is possible to approximate this cost function with a proxy submodular function. We answer this question in the negative for two major problems in metric optimization, namely Steiner Tree and Uncapacitated Facility Location. We do so by proving super-constant lower bounds on the submodularity gap for these problems, which are in contrast to the known constant factor cost sharing schemes known for them. Technically, our lower bounds build on strong lower bounds for the online variants of these two problems. Nevertheless, online lower bounds do not always imply submodularity lower bounds. We show that the problem Maximum Bipartite Matching does not exhibit any submodularity gap, despite its online variant being only (1 - 1/e)-competitive in the randomized setting.

Determining the satisfiability of Boolean constraint-satisfaction problems with different types of constraints, that is hybrid constraints, is a well-studied problem with important applications. We study here a new application of hybrid Boolean constraints, which arises in quantum computing. The problem relates to constrained perfect matching in edge-colored graphs. While general-purpose hybrid constraint solvers can be powerful, we show that direct encodings of the constrained-matching problem as hybrid constraints scale poorly and special techniques are still needed. We propose a novel encoding based on Tutte's Theorem in graph theory as well as optimization techniques. Empirical results demonstrate that our encoding, in suitable languages with advanced SAT solvers, scales significantly better than a number of competing approaches on constrained-matching benchmarks. Our study identifies the necessity of designing problem-specific encodings when applying powerful general-purpose constraint solvers.

With recent advancements in computer hardware and software platforms, there has been a surge of interest in solving partial differential equations with deep learning-based methods, and the integration with domain decomposition strategies has attracted considerable attention owing to its enhanced representation and parallelization capacities of the network solution. While there are already several works that substitute the subproblem solver with neural networks for overlapping Schwarz methods, the non-overlapping counterpart has not been extensively explored because of the inaccurate flux estimation at interface that would propagate errors to neighbouring subdomains and eventually hinder the convergence of outer iterations. In this study, a novel learning approach for solving elliptic boundary value problems, i.e., the compensated deep Ritz method using neural network extension operators, is proposed to enable reliable flux transmission across subdomain interfaces, thereby allowing us to construct effective learning algorithms for realizing non-overlapping domain decomposition methods (DDMs) in the presence of erroneous interface conditions. Numerical experiments on a variety of elliptic problems, including regular and irregular interfaces, low and high dimensions, two and four subdomains, and smooth and high-contrast coefficients are carried out to validate the effectiveness of our proposed algorithms.

Large language models (LLMs) are increasingly adopted for a variety of tasks with implicit graphical structures, such as planning in robotics, multi-hop question answering or knowledge probing, structured commonsense reasoning, and more. While LLMs have advanced the state-of-the-art on these tasks with structure implications, whether LLMs could explicitly process textual descriptions of graphs and structures, map them to grounded conceptual spaces, and perform structured operations remains underexplored. To this end, we propose NLGraph (Natural Language Graph), a comprehensive benchmark of graph-based problem solving designed in natural language. NLGraph contains 29,370 problems, covering eight graph reasoning tasks with varying complexity from simple tasks such as connectivity and shortest path up to complex problems such as maximum flow and simulating graph neural networks. We evaluate LLMs (GPT-3/4) with various prompting approaches on the NLGraph benchmark and find that 1) language models do demonstrate preliminary graph reasoning abilities, 2) the benefit of advanced prompting and in-context learning diminishes on more complex graph problems, while 3) LLMs are also (un)surprisingly brittle in the face of spurious correlations in graph and problem settings. We then propose Build-a-Graph Prompting and Algorithmic Prompting, two instruction-based approaches to enhance LLMs in solving natural language graph problems. Build-a-Graph and Algorithmic prompting improve the performance of LLMs on NLGraph by 3.07% to 16.85% across multiple tasks and settings, while how to solve the most complicated graph reasoning tasks in our setup with language models remains an open research question. The NLGraph benchmark and evaluation code are available at //github.com/Arthur-Heng/NLGraph.

Answer Set Programming with Quantifiers ASP(Q) extends Answer Set Programming (ASP) to allow for declarative and modular modeling of problems from the entire polynomial hierarchy. The first implementation of ASP(Q), called qasp, was based on a translation to Quantified Boolean Formulae (QBF) with the aim of exploiting the well-developed and mature QBF-solving technology. However, the implementation of the QBF encoding employed in qasp is very general and might produce formulas that are hard to evaluate for existing QBF solvers because of the large number of symbols and sub-clauses. In this paper, we present a new implementation that builds on the ideas of qasp and features both a more efficient encoding procedure and new optimized encodings of ASP(Q) programs in QBF. The new encodings produce smaller formulas (in terms of the number of quantifiers, variables, and clauses) and result in a more efficient evaluation process. An algorithm selection strategy automatically combines several QBF-solving back-ends to further increase performance. An experimental analysis, conducted on known benchmarks, shows that the new system outperforms qasp.

We introduce a filtering technique for Discontinuous Galerkin approximations of hyperbolic problems. Following an approach already proposed for the Hamilton-Jacobi equations by other authors, we aim at reducing the spurious oscillations that arise in presence of discontinuities when high order spatial discretizations are employed. This goal is achieved using a filter function that keeps the high order scheme when the solution is regular and switches to a monotone low order approximation if it is not. The method has been implemented in the framework of the $deal.II$ numerical library, whose mesh adaptation capabilities are also used to reduce the region in which the low order approximation is used. A number of numerical experiments demonstrate the potential of the proposed filtering technique.

Let $T$ be a matrix whose entries are linear forms over the noncommutative variables $x_1, x_2, \ldots, x_n$. The noncommutative Edmonds' problem (NSINGULAR) aims to determine whether $T$ is invertible in the free skew field generated by $x_1,x_2,\ldots,x_n$. Currently, there are three different deterministic polynomial-time algorithms to solve this problem: using operator scaling [Garg, Gurvits, Oliveira, and Wigserdon (2016)], algebraic methods [Ivanyos, Qiao, and Subrahmanyam (2018)], and convex optimization [Hamada and Hirai (2021)]. In this paper, we present a simpler algorithm for the NSINGULAR problem. While our algorithmic template is similar to the one in Ivanyos et. al.(2018), it significantly differs in its implementation of the rank increment step. Instead of computing the limit of a second Wong sequence, we reduce the problem to the polynomial identity testing (PIT) of noncommutative algebraic branching programs (ABPs). This enables us to bound the bit-complexity of the algorithm over $\mathbb{Q}$ without requiring special care. Moreover, the rank increment step can be implemented in quasipolynomial-time even without an explicit description of the coefficient matrices in $T$. This is possible by exploiting the connection with the black-box PIT of noncommutative ABPs [Forbes and Shpilka (2013)].

Many machine learning applications and tasks rely on the stochastic gradient descent (SGD) algorithm and its variants. Effective step length selection is crucial for the success of these algorithms, which has motivated the development of algorithms such as ADAM or AdaGrad. In this paper, we propose a novel algorithm for adaptive step length selection in the classical SGD framework, which can be readily adapted to other stochastic algorithms. Our proposed algorithm is inspired by traditional nonlinear optimization techniques and is supported by analytical findings. We show that under reasonable conditions, the algorithm produces step lengths in line with well-established theoretical requirements, and generates iterates that converge to a stationary neighborhood of a solution in expectation. We test the proposed algorithm on logistic regressions and deep neural networks and demonstrate that the algorithm can generate step lengths comparable to the best step length obtained from manual tuning.

北京阿比特科技有限公司