Let $T$ be a matrix whose entries are linear forms over the noncommutative variables $x_1, x_2, \ldots, x_n$. The noncommutative Edmonds' problem (NSINGULAR) aims to determine whether $T$ is invertible in the free skew field generated by $x_1,x_2,\ldots,x_n$. Currently, there are three different deterministic polynomial-time algorithms to solve this problem: using operator scaling [Garg, Gurvits, Oliveira, and Wigserdon (2016)], algebraic methods [Ivanyos, Qiao, and Subrahmanyam (2018)], and convex optimization [Hamada and Hirai (2021)]. In this paper, we present a simpler algorithm for the NSINGULAR problem. While our algorithmic template is similar to the one in Ivanyos et. al.(2018), it significantly differs in its implementation of the rank increment step. Instead of computing the limit of a second Wong sequence, we reduce the problem to the polynomial identity testing (PIT) of noncommutative algebraic branching programs (ABPs). This enables us to bound the bit-complexity of the algorithm over $\mathbb{Q}$ without requiring special care. Moreover, the rank increment step can be implemented in quasipolynomial-time even without an explicit description of the coefficient matrices in $T$. This is possible by exploiting the connection with the black-box PIT of noncommutative ABPs [Forbes and Shpilka (2013)].
In this paper, we devise a scheme for kernelizing, in sublinear space and polynomial time, various problems on planar graphs. The scheme exploits planarity to ensure that the resulting algorithms run in polynomial time and use O((sqrt(n) + k) log n) bits of space, where n is the number of vertices in the input instance and k is the intended solution size. As examples, we apply the scheme to Dominating Set and Vertex Cover. For Dominating Set, we also show that a well-known kernelization algorithm due to Alber et al. (JACM 2004) can be carried out in polynomial time and space O(k log n). Along the way, we devise restricted-memory procedures for computing region decompositions and approximating the aforementioned problems, which might be of independent interest.
The Immersed Boundary (IB) method of Peskin (J. Comput. Phys., 1977) is useful for problems involving fluid-structure interactions or complex geometries. By making use of a regular Cartesian grid that is independent of the geometry, the IB framework yields a robust numerical scheme that can efficiently handle immersed deformable structures. Additionally, the IB method has been adapted to problems with prescribed motion and other PDEs with given boundary data. IB methods for these problems traditionally involve penalty forces which only approximately satisfy boundary conditions, or they are formulated as constraint problems. In the latter approach, one must find the unknown forces by solving an equation that corresponds to a poorly conditioned first-kind integral equation. This operation can require a large number of iterations of a Krylov method, and since a time-dependent problem requires this solve at each time step, this method can be prohibitively inefficient without preconditioning. In this work, we introduce a new, well-conditioned IB formulation for boundary value problems, which we call the Immersed Boundary Double Layer (IBDL) method. We present the method as it applies to Poisson and Helmholtz problems to demonstrate its efficiency over the original constraint method. In this double layer formulation, the equation for the unknown boundary distribution corresponds to a well-conditioned second-kind integral equation that can be solved efficiently with a small number of iterations of a Krylov method. Furthermore, the iteration count is independent of both the mesh size and immersed boundary point spacing. The method converges away from the boundary, and when combined with a local interpolation, it converges in the entire PDE domain. Additionally, while the original constraint method applies only to Dirichlet problems, the IBDL formulation can also be used for Neumann conditions.
It is well-known that the spacetime diagrams of some cellular automata have a fractal structure: for instance Pascal's triangle modulo 2 generates a Sierpi\'nski triangle. It has been shown that such patterns can occur when the alphabet is endowed with the structure of an Abelian group, provided the cellular automaton is a morphism with respect to this structure. The spacetime diagram then has a property related to $k$-automaticity. We show that this condition can be relaxed from an Abelian group to a commutative monoid, and that in this case the spacetime diagrams still exhibit the same regularity.
The race for the most efficient, accurate, and universal algorithm in scientific computing drives innovation. At the same time, this healthy competition is only beneficial if the research output is actually comparable to prior results. Fairly comparing algorithms can be a complex endeavor, as the implementation, configuration, compute environment, and test problems need to be well-defined. Due to the increase in computer-based experiments, new infrastructure for facilitating the exchange and comparison of new algorithms is also needed. To this end, we propose a benchmark framework, as a set of generic specifications for comparing implementations of algorithms using test cases native to a community. Its value lies in its ability to fairly compare and validate existing methods for new applications, as well as compare newly developed methods with existing ones. As a prototype for a more general framework, we have begun building a benchmark tool for the model order reduction (MOR) community. The data basis of the tool is the collection of the Model Order Reduction Wiki (MORWiki). The wiki features three main categories: benchmarks, methods, and software. An editorial board curates submissions and patrols edited entries. Data sets for linear and parametric-linear models are already well represented in the existing collection. Data sets for non-linear or procedural models, for which only evaluation data, or codes / algorithmic descriptions, rather than equations, are available, are being added and extended. Properties and interesting characteristics used for benchmark selection and later assessments are recorded in the model metadata. Our tool, the Model Order Reduction Benchmarker (MORB) is under active development for linear time-invariant systems and solvers.
Control systems often need to satisfy strict safety requirements. Safety index provides a handy way to evaluate the safety level of the system and derive the resulting safe control policies. However, designing safety index functions under control limits is difficult and requires a great amount of expert knowledge. This paper proposes a framework for synthesizing the safety index for general control systems using sum-of-squares programming. Our approach is to show that ensuring the non-emptiness of safe control on the safe set boundary is equivalent to a local manifold positiveness problem. We then prove that this problem is equivalent to sum-of-squares programming via the Positivstellensatz of algebraic geometry. We validate the proposed method on robot arms with different degrees of freedom and ground vehicles. The results show that the synthesized safety index guarantees safety and our method is effective even in high-dimensional robot systems.
We study the online variant of the Min-Sum Set Cover (MSSC) problem, a generalization of the well-known list update problem. In the MSSC problem, an algorithm has to maintain the time-varying permutation of the list of $n$ elements, and serve a sequence of requests $R_1, R_2, \dots, R_t, \dots$. Each $R_t$ is a subset of elements of cardinality at most $r$. For a requested set $R_t$, an online algorithm has to pay the cost equal to the position of the first element from $R_t$ on its list. Then, it may arbitrarily permute its list, paying the number of swapped adjacent element pairs. We present the first constructive deterministic algorithm for this problem, whose competitive ratio does not depend on $n$. Our algorithm is $O(r^2)$-competitive, which beats both the existential upper bound of $O(r^4)$ by Bienkowski and Mucha [AAAI '23] and the previous constructive bound of $O(r^{3/2} \cdot \sqrt{n})$ by Fotakis et al. [ICALP '20]. Furthermore, we show that our algorithm attains an asymptotically optimal competitive ratio of $O(r)$ when compared to the best fixed permutation of elements.
Analytical methods are fundamental in studying acoustics problems. One of the important tools is the Wiener-Hopf method, which can be used to solve many canonical problems with sharp transitions in boundary conditions on a plane/plate. However, there are some strict limitations to its use, usually the boundary conditions need to be imposed on parallel lines (after a suitable mapping). Such mappings exist for wedges with continuous boundaries, but for discrete boundaries, they have not yet been constructed. In our previous article, we have overcome this limitation and studied the diffraction of acoustic waves by a wedge consisting of point scatterers. Here, the problem is generalised to an arbitrary number of periodic semi-infinite arrays with arbitrary orientations. This is done by constructing several coupled systems of equations (one for every semi-infinite array) which are treated independently. The derived systems of equations are solved using the discrete Wiener-Hopf technique and the resulting matrix equation is inverted using elementary matrix arithmetic. Of course, numerically this matrix needs to be truncated, but we are able to do so such that thousands of scatterers on every array are included in the numerical results. Comparisons with other numerical methods are considered, and their strengths/weaknesses are highlighted.
Object detection in 3D is a crucial aspect in the context of autonomous vehicles and drones. However, prototyping detection algorithms is time-consuming and costly in terms of energy and environmental impact. To address these challenges, one can check the effectiveness of different models by training on a subset of the original training set. In this paper, we present a comparison of three algorithms for selecting such a subset - random sampling, random per class sampling, and our proposed MONSPeC (Maximum Object Number Sampling per Class). We provide empirical evidence for the superior effectiveness of random per class sampling and MONSPeC over basic random sampling. By replacing random sampling with one of the more efficient algorithms, the results obtained on the subset are more likely to transfer to the results on the entire dataset. The code is available at: //github.com/vision-agh/monspec.
In this work, we revisit the problem of solving large-scale semidefinite programs using randomized first-order methods and stochastic smoothing. We introduce two oblivious stochastic mirror descent algorithms based on a complementary composite setting. One algorithm is designed for non-smooth objectives, while an accelerated version is tailored for smooth objectives. Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function. For the non-smooth case with $\mathcal{M}-$bounded oracles, we prove a convergence rate of $ O( {\mathcal{M}}/{\sqrt{T}} ) $. For the $L$-smooth case with a feasible set bounded by $D$, we derive a convergence rate of $ O( {L^2 D^2}/{(T^{2}\sqrt{T})} + {(D_0^2+\sigma^2)}/{\sqrt{T}} )$, where $D_0$ is the starting distance to an optimal solution, and $ \sigma^2$ is the stochastic oracle variance. These rates had only been obtained so far by either assuming prior knowledge of the Lipschitz constant or the starting distance to an optimal solution. We further show how to extend our framework to relative scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
Parallel software codes in high performance computing (HPC) continue to grow in complexity and scale as we enter the exascale era. A diverse set of emerging hardware and programming paradigms make developing, optimizing, and maintaining parallel software burdensome for developers. One way to alleviate some of these burdens is with automated development and analysis tools. Such tools can perform complex and/or remedial tasks for developers that increase their productivity and decrease the chance for error. So far, such tools for code development and performance analysis have been limited in the complexity of tasks they can perform. However, with recent advancements in language modeling, and the wealth of code related data that is now available online, these tools have started to utilize predictive language models to automate more complex tasks. In this paper, we show how large language models (LLMs) can be applied to tasks specific to high performance and scientific codes. We train LLMs using code and performance data that is specific to parallel codes. We compare several recent LLMs on HPC related tasks and introduce a new model, HPC-Coder, trained on parallel code. In our experiments we show that this model can auto-complete HPC functions where general models cannot, decorate for loops with OpenMP pragmas, and model performance changes in two scientific application repositories.