Optimization of DR-submodular functions has experienced a notable surge in significance in recent times, marking a pivotal development within the domain of non-convex optimization. Motivated by real-world scenarios, some recent works have delved into the maximization of non-monotone DR-submodular functions over general (not necessarily down-closed) convex set constraints. Up to this point, these works have all used the minimum $\ell_\infty$ norm of any feasible solution as a parameter. Unfortunately, a recent hardness result due to Mualem \& Feldman~\cite{mualem2023resolving} shows that this approach cannot yield a smooth interpolation between down-closed and non-down-closed constraints. In this work, we suggest novel offline and online algorithms that provably provide such an interpolation based on a natural decomposition of the convex body constraint into two distinct convex bodies: a down-closed convex body and a general convex body. We also empirically demonstrate the superiority of our proposed algorithms across three offline and two online applications.
The notion of robustness in XAI refers to the observed variations in the explanation of the prediction of a learned model with respect to changes in the input leading to that prediction. Intuitively, if the input being explained is modified slightly subtly enough so as to not change the prediction of the model too much, then we would expect that the explanation provided for that new input does not change much either. We argue that a combination through discriminative averaging of ensembles weak learners explanations can improve the robustness of explanations in ensemble methods.This approach has been implemented and tested with post-hoc SHAP method and Random Forest ensemble with successful results. The improvements obtained have been measured quantitatively and some insights into the explicability robustness in ensemble methods are presented.
For the problem of inferring a Gaussian graphical model (GGM), this work explores the application of a recent approach from the multiple testing literature for graph inference. The main idea of the method by Rebafka et al. (2022) is to model the data by a latent variable model, the so-called noisy stochastic block model (NSBM), and then use the associated ${\ell}$-values to infer the graph. The inferred graph controls the false discovery rate, that means that the proportion of falsely declared edges does not exceed a user-defined nominal level. Here it is shown that any test statistic from the GGM literature can be used as input for the NSBM approach to perform GGM inference. To make the approach feasible in practice, a new, computationally efficient inference algorithm for the NSBM is developed relying on a greedy approach to maximize the integrated complete-data likelihood. Then an extensive numerical study illustrates that the NSBM approach outperforms the state of the art for any of the here considered GGM-test statistics. In particular in sparse settings and on real datasets a significant gain in power is observed.
Recently, retrieval augmentation and tool augmentation have demonstrated a remarkable capability to expand the internal memory boundaries of language models (LMs) by providing external context. However, internal memory and external context inevitably clash, leading to knowledge conflicts within LMs. In this paper, we aim to interpret the mechanism of knowledge conflicts through the lens of information flow, and then mitigate conflicts by precise interventions at the pivotal point. We find there are some attention heads with opposite effects in the later layers, where memory heads can recall knowledge from internal memory, and context heads can retrieve knowledge from external context. Moreover, we reveal that the pivotal point at which knowledge conflicts emerge in LMs is the integration of inconsistent information flows by memory heads and context heads. Inspired by the insights, we propose a novel method called Pruning Head via PatH PatcHing (PH3), which can efficiently mitigate knowledge conflicts by pruning conflicting attention heads without updating model parameters. PH3 can flexibly control eight LMs to use internal memory ($\uparrow$ 44.0%) or external context ($\uparrow$ 38.5%). Moreover, PH3 can also improve the performance of LMs on open-domain QA tasks. We also conduct extensive experiments to demonstrate the cross-model, cross-relation, and cross-format generalization of our method.
Adversarial examples in machine learning has emerged as a focal point of research due to their remarkable ability to deceive models with seemingly inconspicuous input perturbations, potentially resulting in severe consequences. In this study, we undertake a thorough investigation into the emergence of adversarial examples, a phenomenon that can, in principle, manifest in a wide range of machine learning models. Through our research, we unveil a new notion termed computational entanglement, with its ability to entangle distant features, display perfect correlations or anti-correlations regardless to their spatial separation, significantly contributes to the emergence of adversarial examples. We illustrate how computational entanglement aligns with relativistic effects such as time dilation and length contraction to feature pair, ultimately resulting in the convergence of their angle differences and distances towards zero, signifying perfect correlation, or towards maximum, indicating perfect anti-correlation.
Despite their popularity in the field of continuous optimisation, second-order quasi-Newton methods are challenging to apply in machine learning, as the Hessian matrix is intractably large. This computational burden is exacerbated by the need to address non-convexity, for instance by modifying the Hessian's eigenvalues as in Saddle-Free Newton methods. We propose an optimisation algorithm which addresses both of these concerns - to our knowledge, the first efficiently-scalable optimisation algorithm to asymptotically use the exact inverse Hessian with absolute-value eigenvalues. Our method frames the problem as a series which principally square-roots and inverts the squared Hessian, then uses it to precondition a gradient vector, all without explicitly computing or eigendecomposing the Hessian. A truncation of this infinite series provides a new optimisation algorithm which is scalable and comparable to other first- and second-order optimisation methods in both runtime and optimisation performance. We demonstrate this in a variety of settings, including a ResNet-18 trained on CIFAR-10.
We study first-order logic over unordered structures whose elements carry a finite number of data values from an infinite domain. Data values can be compared wrt.\ equality. As the satisfiability problem for this logic is undecidable in general, we introduce a family of local fragments. They restrict quantification to the neighbourhood of a given reference point that is bounded by some radius. Our first main result establishes decidability of the satisfiability problem for the local radius-1 fragment in presence of one ``diagonal relation''. On the other hand, extending the radius leads to undecidability. In a second part, we provide the precise decidability and complexity landscape of the satisfiability problem for the existential fragments of local logic, which are parameterized by the number of data values carried by each element and the radius of the considered neighbourhoods. Altogether, we draw a landscape of formalisms that are suitable for the specification of systems with data and open up new avenues for future research.
Contact-rich manipulation tasks often exhibit a large sim-to-real gap. For instance, industrial assembly tasks frequently involve tight insertions where the clearance is less than \(0.1\) mm and can even be negative when dealing with a deformable receptacle. This narrow clearance leads to complex contact dynamics that are difficult to model accurately in simulation, making it challenging to transfer simulation-learned policies to real-world robots. In this paper, we propose a novel framework for robustly learning manipulation skills for real-world tasks using only the simulated data. Our framework consists of two main components: the ``Force Planner'' and the ``Gain Tuner''. The Force Planner is responsible for planning both the robot motion and desired contact forces, while the Gain Tuner dynamically adjusts the compliance control gains to accurately track the desired contact forces during task execution. The key insight of this work is that by adaptively adjusting the robot's compliance control gains during task execution, we can modulate contact forces in the new environment, thereby generating trajectories similar to those trained in simulation and narrows the sim-to-real gap. Experimental results show that our method, trained in simulation on a generic square peg-and-hole task, can generalize to a variety of real-world insertion tasks involving narrow or even negative clearances, all without requiring any fine-tuning.
This manuscript investigates the information-theoretic limits of integrated sensing and communications (ISAC), aiming for simultaneous reliable communication and precise channel state estimation. We model such a system with a state-dependent discrete memoryless channel (SD-DMC) with present or absent channel feedback and generalized side information at the transmitter and the receiver, where the joint task of message decoding and state estimation is performed at the receiver. The relationship between the achievable communication rate and estimation error, the capacity-distortion (C-D) trade-off, is characterized across different causality levels of the side information. This framework is shown to be capable of modeling various practical scenarios by assigning the side information with different meanings, including monostatic and bistatic radar systems. The analysis is then extended to the two-user degraded broadcast channel, and we derive an achievable C-D region that is tight under certain conditions. To solve the optimization problem arising in the computation of C-D functions/regions, we propose a proximal block coordinate descent (BCD) method, prove its convergence to a stationary point, and derive a stopping criterion. Finally, several representative examples are studied to demonstrate the versatility of our framework and the effectiveness of the proposed algorithm.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.