Programs using random values can either make all choices in advance (eagerly) or sample as needed (lazily). In formal proofs, we focus on indistinguishability between two lazy programs, a common requirement in the random oracle model (ROM). While rearranging sampling instructions often solves this, it gets complex when sampling is spread across procedures. The traditional approach, introduced by Bellare and Rogaway in 2004, converts programs to eager sampling, but requires assuming finite memory, a polynomial bound, and artificial resampling functions. We introduce a novel approach in probabilistic Relational Hoare Logic (pRHL) that directly proves indistinguishability, eliminating the need for conversions and the mentioned assumptions. We also implement this approach in the EasyCrypt theorem prover, showing that it can be a convenient alternative to the traditional method.
Expected Goals (xG) has emerged as a popular tool for evaluating finishing skill in soccer analytics. It involves comparing a player's cumulative xG with their actual goal output, where consistent overperformance indicates strong finishing ability. However, the assessment of finishing skill in soccer using xG remains contentious due to players' difficulty in consistently outperforming their cumulative xG. In this paper, we aim to address the limitations and nuances surrounding the evaluation of finishing skill using xG statistics. Specifically, we explore three hypotheses: (1) the deviation between actual and expected goals is an inadequate metric due to the high variance of shot outcomes and limited sample sizes, (2) the inclusion of all shots in cumulative xG calculation may be inappropriate, and (3) xG models contain biases arising from interdependencies in the data that affect skill measurement. We found that sustained overperformance of cumulative xG requires both high shot volumes and exceptional finishing, including all shot types can obscure the finishing ability of proficient strikers, and that there is a persistent bias that makes the actual and expected goals closer for excellent finishers than it really is. Overall, our analysis indicates that we need more nuanced quantitative approaches for investigating a player's finishing ability, which we achieved using a technique from AI fairness to learn an xG model that is calibrated for multiple subgroups of players. As a concrete use case, we show that (1) the standard biased xG model underestimates Messi's GAX by 17% and (2) Messi's GAX is 27% higher than the typical elite high-shot-volume attacker, indicating that Messi is even a more exceptional finisher than people commonly believed.
Recent work in mechanistic interpretability has shown that behaviors in language models can be successfully reverse-engineered through circuit analysis. A common criticism, however, is that each circuit is task-specific, and thus such analysis cannot contribute to understanding the models at a higher level. In this work, we present evidence that insights (both low-level findings about specific heads and higher-level findings about general algorithms) can indeed generalize across tasks. Specifically, we study the circuit discovered in Wang et al. (2022) for the Indirect Object Identification (IOI) task and 1.) show that it reproduces on a larger GPT2 model, and 2.) that it is mostly reused to solve a seemingly different task: Colored Objects (Ippolito & Callison-Burch, 2023). We provide evidence that the process underlying both tasks is functionally very similar, and contains about a 78% overlap in in-circuit attention heads. We further present a proof-of-concept intervention experiment, in which we adjust four attention heads in middle layers in order to 'repair' the Colored Objects circuit and make it behave like the IOI circuit. In doing so, we boost accuracy from 49.6% to 93.7% on the Colored Objects task and explain most sources of error. The intervention affects downstream attention heads in specific ways predicted by their interactions in the IOI circuit, indicating that this subcircuit behavior is invariant to the different task inputs. Overall, our results provide evidence that it may yet be possible to explain large language models' behavior in terms of a relatively small number of interpretable task-general algorithmic building blocks and computational components.
We propose an adjusted Wasserstein distributionally robust estimator -- based on a nonlinear transformation of the Wasserstein distributionally robust (WDRO) estimator in statistical learning. The classic WDRO estimator is asymptotically biased, while our adjusted WDRO estimator is asymptotically unbiased, resulting in a smaller asymptotic mean squared error. Meanwhile, the proposed adjusted WDRO has an out-of-sample performance guarantee. Further, under certain conditions, our proposed adjustment technique provides a general principle to de-bias asymptotically biased estimators. Specifically, we will investigate how the adjusted WDRO estimator is developed in the generalized linear model, including logistic regression, linear regression, and Poisson regression. Numerical experiments demonstrate the favorable practical performance of the adjusted estimator over the classic one.
Fluid antenna systems (FASs) can reconfigure their antenna locations freely within a spatially continuous space. To keep favorable antenna positions, the channel state information (CSI) acquisition for FASs is essential. While some techniques have been proposed, most existing FAS channel estimators require several channel assumptions, such as slow variation and angular-domain sparsity. When these assumptions are not reasonable, the model mismatch may lead to unpredictable performance loss. In this paper, we propose the successive Bayesian reconstructor (S-BAR) as a general solution to estimate FAS channels. Unlike model-based estimators, the proposed S-BAR is prior-aided, which builds the experiential kernel for CSI acquisition. Inspired by Bayesian regression, the key idea of S-BAR is to model the FAS channels as a stochastic process, whose uncertainty can be successively eliminated by kernel-based sampling and regression. In this way, the predictive mean of the regressed stochastic process can be viewed as the maximum a posterior (MAP) estimator of FAS channels. Simulation results verify that, in both model-mismatched and model-matched cases, the proposed S-BAR can achieve higher estimation accuracy than the existing schemes.
To enhance perception performance in complex and extensive scenarios within the realm of autonomous driving, there has been a noteworthy focus on temporal modeling, with a particular emphasis on streaming methods. The prevailing trend in streaming models involves the utilization of stream queries for the propagation of temporal information. Despite the prevalence of this approach, the direct application of the streaming paradigm to the construction of vectorized high-definition maps (HD-maps) fails to fully harness the inherent potential of temporal information. This paper introduces the Stream Query Denoising (SQD) strategy as a novel approach for temporal modeling in high-definition map (HD-map) construction. SQD is designed to facilitate the learning of temporal consistency among map elements within the streaming model. The methodology involves denoising the queries that have been perturbed by the addition of noise to the ground-truth information from the preceding frame. This denoising process aims to reconstruct the ground-truth information for the current frame, thereby simulating the prediction process inherent in stream queries. The SQD strategy can be applied to those streaming methods (e.g., StreamMapNet) to enhance the temporal modeling. The proposed SQD-MapNet is the StreamMapNet equipped with SQD. Extensive experiments on nuScenes and Argoverse2 show that our method is remarkably superior to other existing methods across all settings of close range and long range. The code will be available soon.
The end-to-end ASR model is often desired in the streaming multilingual scenario since it is easier to deploy and can benefit from pre-trained speech models such as powerful foundation models. Meanwhile, the heterogeneous nature and imbalanced data abundance of different languages may cause performance degradation, leading to asynchronous peak performance for different languages during training, especially on tail ones. Sometimes even the data itself may become unavailable as a result of the enhanced privacy protection. Existing work tend to significantly increase the model size or learn language-specific decoders to accommodate each language separately. In this study, we explore simple yet effective Language-Dependent Adapter (LDA) finetuning under a cascaded Conformer transducer framework enhanced by teacher pseudo-labeling for tail languages in the streaming multilingual ASR. The adapter only accounts for 0.4% of the full model per language. It is plugged into the frozen foundation model and is the only trainable module during the finetuning process with noisy student training. The final model merges the adapter parameters from different checkpoints for different languages. The model performance is validated on a challenging multilingual dictation dataset, which includes 39 tail languages across Latin, Greek, Arabic, etc. Our proposed method brings 12.2% word error rate reduction on average and up to 37.5% on a single locale. Furthermore, we show that our parameter-efficient LDA can match the quality of the full model finetuning, thus greatly alleviating the asynchronous peak performance issue.
To enhance the intelligence degree in operation and maintenance, a novel method for fault detection in power grids is proposed. The proposed GNN-based approach first identifies fault nodes through a specialized feature extraction method coupled with a knowledge graph. By incorporating temporal data, the method leverages the status of nodes from preceding and subsequent time periods to help current fault detection. To validate the effectiveness of the node features, a correlation analysis of the output features from each node was conducted. The results from experiments show that this method can accurately locate fault nodes in simulation scenarios with a remarkable accuracy. Additionally, the graph neural network based feature modeling allows for a qualitative examination of how faults spread across nodes, which provides valuable insights for analyzing fault nodes.
Generalized linear regressions, such as logistic regressions or Poisson regressions, are long-studied regression analysis approaches, and their applications are widely employed in various classification problems. Our study considers a stochastic generalized linear regression model as a stochastic problem with chance constraints and tackles it using nonconvex programming techniques. Clustering techniques and quantile estimation are also used to estimate random data's mean and variance-covariance matrix. Metrics for measuring the performance of logistic regression are used to assess the model's efficacy, including the F1 score, precision score, and recall score. The results of the proposed algorithm were over 1 to 2 percent better than the ordinary logistic regression model on the same dataset with the above assessment criteria.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.