We analyze stochastic gradient descent (SGD) type algorithms on a high-dimensional sphere which is parameterized by a neural network up to a normalization constant. We provide a new algorithm for the setting of supervised learning and show its convergence both theoretically and numerically. We also provide the first proof of convergence for the unsupervised setting, which corresponds to the widely used variational Monte Carlo (VMC) method in quantum physics.
Optimal control problems driven by evolutionary partial differential equations arise in many industrial applications and their numerical solution is known to be a challenging problem. One approach to obtain an optimal feedback control is via the Dynamic Programming principle. Nevertheless, despite many theoretical results, this method has been applied only to very special cases since it suffers from the curse of dimensionality. Our goalis to mitigate this crucial obstruction developing a new version of dynamic programming algorithms based on a tree structure and exploiting the compact representation of the dynamical systems based on tensors notations via a model reduction approach. Here, we want to show how this algorithm can be constructed for general nonlinear control problems and to illustrate its performances on a number of challenging numerical tests. Our numerical results indicate a large decrease in memory requirements, as well as computational time, for the proposed problems. Moreover, we prove the convergence of the algorithm and give some hints on its implementation
We propose gradient-enhanced PINNs based on transfer learning (TL-gPINNs) for inverse problems of the function coefficient discovery in order to overcome deficiency of the discrete characterization of the PDE loss in neural networks and improve accuracy of function feature description, which offers a new angle of view for gPINNs. The TL-gPINN algorithm is applied to infer the unknown variable coefficients of various forms (the polynomial, trigonometric function, hyperbolic function and fractional polynomial) and multiple variable coefficients simultaneously with abundant soliton solutions for the well-known variable coefficient nonlinear Schr\"{o}odinger equation. Compared with the PINN and gPINN, TL-gPINN yields considerable improvement in accuracy. Moreover, our method leverages the advantage of the transfer learning technique, which can help to mitigate the problem of inefficiency caused by extra loss terms of the gradient. Numerical results fully demonstrate the effectiveness of the TL-gPINN method in significant accuracy enhancement, and it also outperforms gPINN in efficiency even when the training data was corrupted with different levels of noise or hyper-parameters of neural networks are arbitrarily changed.
Inspired by certain regularization techniques for linear inverse problems, in this work we investigate the convergence properties of the Levenberg-Marquardt method using singular scaling matrices. Under a completeness condition, we show that the method is well-defined and establish its local quadratic convergence under an error bound assumption. We also prove that the search directions are gradient-related allowing us to show that limit points of the sequence generated by a line-search version of the method are stationary for the sum-of-squares function. The usefulness of the method is illustrated with some examples of parameter identification in heat conduction problems for which specific singular scaling matrices can be used to improve the quality of approximate solutions.
Originally introduced as a neural network for ensemble learning, mixture of experts (MoE) has recently become a fundamental building block of highly successful modern deep neural networks for heterogeneous data analysis in several applications, including those in machine learning, statistics, bioinformatics, economics, and medicine. Despite its popularity in practice, a satisfactory level of understanding of the convergence behavior of Gaussian-gated MoE parameter estimation is far from complete. The underlying reason for this challenge is the inclusion of covariates in the Gaussian gating and expert networks, which leads to their intrinsically complex interactions via partial differential equations with respect to their parameters. We address these issues by designing novel Voronoi loss functions to accurately capture heterogeneity in the maximum likelihood estimator (MLE) for resolving parameter estimation in these models. Our results reveal distinct behaviors of the MLE under two settings: the first setting is when all the location parameters in the Gaussian gating are non-zeros while the second setting is when there exists at least one zero-valued location parameter. Notably, these behaviors can be characterized by the solvability of two different systems of polynomial equations. Finally, we conduct a simulation study to verify our theoretical results.
We propose an online learning algorithm for a class of machine learning models under a separable stochastic approximation framework. The essence of our idea lies in the observation that certain parameters in the models are easier to optimize than others. In this paper, we focus on models where some parameters have a linear nature, which is common in machine learning. In one routine of the proposed algorithm, the linear parameters are updated by the recursive least squares (RLS) algorithm, which is equivalent to a stochastic Newton method; then, based on the updated linear parameters, the nonlinear parameters are updated by the stochastic gradient method (SGD). The proposed algorithm can be understood as a stochastic approximation version of block coordinate gradient descent approach in which one part of the parameters is updated by a second-order SGD method while the other part is updated by a first-order SGD. Global convergence of the proposed online algorithm for non-convex cases is established in terms of the expected violation of a first-order optimality condition. Numerical experiments have shown that the proposed method accelerates convergence significantly and produces more robust training and test performance when compared to other popular learning algorithms. Moreover, our algorithm is less sensitive to the learning rate and outperforms the recently proposed slimTrain algorithm. The code has been uploaded to GitHub for validation.
Numerous error estimates have been carried out on various numerical schemes for subdiffusion equations. Unfortunately most error bounds suffer from a factor $1/(1-\alpha)$ or $\Gamma(1-\alpha)$, which blows up as the fractional order $\alpha\to 1^-$, a phenomenon not consistent with regularity of the continuous problem and numerical simulations in practice. Although efforts have been made to avoid the factor blow-up phenomenon, a robust analysis of error estimates still remains incomplete for numerical schemes with general nonuniform time steps. In this paper, we will consider the $\alpha$-robust error analysis of convolution-type schemes for subdiffusion equations with general nonuniform time-steps, and provide explicit factors in error bounds with dependence information on $\alpha$ and temporal mesh sizes. As illustration, we apply our abstract framework to two widely used schemes, i.e., the L1 scheme and Alikhanov's scheme. Our rigorous proofs reveal that the stability and convergence of a class of convolution-type schemes is $\alpha$-robust, i.e., the factor will not blowup while $\alpha\to 1^-$ with general nonuniform time steps even when rather general initial regularity condition is considered.
The Schr\"odinger bridge problem (SBP) is gaining increasing attention in generative modeling and showing promising potential even in comparison with the score-based generative models (SGMs). SBP can be interpreted as an entropy-regularized optimal transport problem, which conducts projections onto every other marginal alternatingly. However, in practice, only approximated projections are accessible and their convergence is not well understood. To fill this gap, we present a first convergence analysis of the Schr\"odinger bridge algorithm based on approximated projections. As for its practical applications, we apply SBP to probabilistic time series imputation by generating missing values conditioned on observed data. We show that optimizing the transport cost improves the performance and the proposed algorithm achieves the state-of-the-art result in healthcare and environmental data while exhibiting the advantage of exploring both temporal and feature patterns in probabilistic time series imputation.
We consider discontinuous Galerkin methods for an elliptic distributed optimal control problem and we propose multigrid methods to solve the discretized system. We prove that the $W$-cycle algorithm is uniformly convergent in the energy norm and is robust with respect to a regularization parameter on convex domains. Numerical results are shown for both $W$ -cycle and $V$-cycle algorithms.
A novel linear integration rule called $\textit{control neighbors}$ is proposed in which nearest neighbor estimates act as control variates to speed up the convergence rate of the Monte Carlo procedure. The main result is the $\mathcal{O}(n^{-1/2} n^{-1/d})$ convergence rate -- where $n$ stands for the number of evaluations of the integrand and $d$ for the dimension of the domain -- of this estimate for Lipschitz functions, a rate which, in some sense, is optimal. Several numerical experiments validate the complexity bound and highlight the good performance of the proposed estimator.
Numerically solving high-dimensional partial differential equations (PDEs) is a major challenge. Conventional methods, such as finite difference methods, are unable to solve high-dimensional PDEs due to the curse-of-dimensionality. A variety of deep learning methods have been recently developed to try and solve high-dimensional PDEs by approximating the solution using a neural network. In this paper, we prove global convergence for one of the commonly-used deep learning algorithms for solving PDEs, the Deep Galerkin Method (DGM). DGM trains a neural network approximator to solve the PDE using stochastic gradient descent. We prove that, as the number of hidden units in the single-layer network goes to infinity (i.e., in the ``wide network limit"), the trained neural network converges to the solution of an infinite-dimensional linear ordinary differential equation (ODE). The PDE residual of the limiting approximator converges to zero as the training time $\rightarrow \infty$. Under mild assumptions, this convergence also implies that the neural network approximator converges to the solution of the PDE. A closely related class of deep learning methods for PDEs is Physics Informed Neural Networks (PINNs). Using the same mathematical techniques, we can prove a similar global convergence result for the PINN neural network approximators. Both proofs require analyzing a kernel function in the limit ODE governing the evolution of the limit neural network approximator. A key technical challenge is that the kernel function, which is a composition of the PDE operator and the neural tangent kernel (NTK) operator, lacks a spectral gap, therefore requiring a careful analysis of its properties.