亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Numerous error estimates have been carried out on various numerical schemes for subdiffusion equations. Unfortunately most error bounds suffer from a factor $1/(1-\alpha)$ or $\Gamma(1-\alpha)$, which blows up as the fractional order $\alpha\to 1^-$, a phenomenon not consistent with regularity of the continuous problem and numerical simulations in practice. Although efforts have been made to avoid the factor blow-up phenomenon, a robust analysis of error estimates still remains incomplete for numerical schemes with general nonuniform time steps. In this paper, we will consider the $\alpha$-robust error analysis of convolution-type schemes for subdiffusion equations with general nonuniform time-steps, and provide explicit factors in error bounds with dependence information on $\alpha$ and temporal mesh sizes. As illustration, we apply our abstract framework to two widely used schemes, i.e., the L1 scheme and Alikhanov's scheme. Our rigorous proofs reveal that the stability and convergence of a class of convolution-type schemes is $\alpha$-robust, i.e., the factor will not blowup while $\alpha\to 1^-$ with general nonuniform time steps even when rather general initial regularity condition is considered.

相關內容

We present a novel numerical method for solving the anisotropic diffusion equation in toroidally confined magnetic fields which is efficient, accurate and provably stable. The continuous problem is written in terms of a derivative operator for the perpendicular transport and a linear operator, obtained through field line tracing, for the parallel transport. We derive energy estimates of the solution of the continuous initial boundary value problem. A discrete formulation is presented using operator splitting in time with the summation by parts finite difference approximation of spatial derivatives for the perpendicular diffusion operator. Weak penalty procedures are derived for implementing both boundary conditions and parallel diffusion operator obtained by field line tracing. We prove that the fully-discrete approximation is unconditionally stable and asymptotic preserving. Discrete energy estimates are shown to match the continuous energy estimate given the correct choice of penalty parameters. Convergence tests are shown for the perpendicular operator by itself, and the ``NIMROD benchmark" problem is used as a manufactured solution to show the full scheme converges even in the case where the perpendicular diffusion is zero. Finally, we present a magnetic field with chaotic regions and islands and show the contours of the anisotropic diffusion equation reproduce key features in the field.

We study distributed estimation and learning problems in a networked environment in which agents exchange information to estimate unknown statistical properties of random variables from their privately observed samples. By exchanging information about their private observations, the agents can collectively estimate the unknown quantities, but they also face privacy risks. The goal of our aggregation schemes is to combine the observed data efficiently over time and across the network, while accommodating the privacy needs of the agents and without any coordination beyond their local neighborhoods. Our algorithms enable the participating agents to estimate a complete sufficient statistic from private signals that are acquired offline or online over time, and to preserve the privacy of their signals and network neighborhoods. This is achieved through linear aggregation schemes with adjusted randomization schemes that add noise to the exchanged estimates subject to differential privacy (DP) constraints. In every case, we demonstrate the efficiency of our algorithms by proving convergence to the estimators of a hypothetical, omniscient observer that has central access to all of the signals. We also provide convergence rate analysis and finite-time performance guarantees and show that the noise that minimizes the convergence time to the best estimates is the Laplace noise, with parameters corresponding to each agent's sensitivity to their signal and network characteristics. Finally, to supplement and validate our theoretical results, we run experiments on real-world data from the US Power Grid Network and electric consumption data from German Households to estimate the average power consumption of power stations and households under all privacy regimes.

It is well known that the Euler method for approximating the solutions of a random ordinary differential equation $\mathrm{d}X_t/\mathrm{d}t = f(t, X_t, Y_t)$ driven by a stochastic process $\{Y_t\}_t$ with $\theta$-H\"older sample paths is estimated to be of strong order $\theta$ with respect to the time step, provided $f=f(t, x, y)$ is sufficiently regular and with suitable bounds. Here, it is proved that, in many typical cases, further conditions on the noise can be exploited so that the strong convergence is actually of order 1, regardless of the H\"older regularity of the sample paths. This applies for instance to additive or multiplicative It\^o process noises (such as Wiener, Ornstein-Uhlenbeck, and geometric Brownian motion processes); to point-process noises (such as Poisson point processes and Hawkes self-exciting processes, which even have jump-type discontinuities); and to transport-type processes with sample paths of bounded variation. The result is based on a novel approach, estimating the global error as an iterated integral over both large and small mesh scales, and switching the order of integration to move the critical regularity to the large scale. The work is complemented with numerical simulations illustrating the strong order 1 convergence in those cases, and with an example with fractional Brownian motion noise with Hurst parameter $0 < H < 1/2$ for which the order of convergence is $H + 1/2$, hence lower than the attained order 1 in the examples above, but still higher than the order $H$ of convergence expected from previous works.

Stochastic gradient descent with momentum (SGDM) is the dominant algorithm in many optimization scenarios, including convex optimization instances and non-convex neural network training. Yet, in the stochastic setting, momentum interferes with gradient noise, often leading to specific step size and momentum choices in order to guarantee convergence, set aside acceleration. Proximal point methods, on the other hand, have gained much attention due to their numerical stability and elasticity against imperfect tuning. Their stochastic accelerated variants though have received limited attention: how momentum interacts with the stability of (stochastic) proximal point methods remains largely unstudied. To address this, we focus on the convergence and stability of the stochastic proximal point algorithm with momentum (SPPAM), and show that SPPAM allows a faster linear convergence to a neighborhood compared to the stochastic proximal point algorithm (SPPA) with a better contraction factor, under proper hyperparameter tuning. In terms of stability, we show that SPPAM depends on problem constants more favorably than SGDM, allowing a wider range of step size and momentum that lead to convergence.

Separating signals from an additive mixture may be an unnecessarily hard problem when one is only interested in specific properties of a given signal. In this work, we tackle simpler "statistical component separation" problems that focus on recovering a predefined set of statistical descriptors of a target signal from a noisy mixture. Assuming access to samples of the noise process, we investigate a method devised to match the statistics of the solution candidate corrupted by noise samples with those of the observed mixture. We first analyze the behavior of this method using simple examples with analytically tractable calculations. Then, we apply it in an image denoising context employing 1) wavelet-based descriptors, 2) ConvNet-based descriptors on astrophysics and ImageNet data. In the case of 1), we show that our method better recovers the descriptors of the target data than a standard denoising method in most situations. Additionally, despite not constructed for this purpose, it performs surprisingly well in terms of peak signal-to-noise ratio on full signal reconstruction. In comparison, representation 2) appears less suitable for image denoising. Finally, we extend this method by introducing a diffusive stepwise algorithm which gives a new perspective to the initial method and leads to promising results for image denoising under specific circumstances.

Computational optimal transport (OT) has recently emerged as a powerful framework with applications in various fields. In this paper we focus on a relaxation of the original OT problem, the entropic OT problem, which allows to implement efficient and practical algorithmic solutions, even in high dimensional settings. This formulation, also known as the Schr\"odinger Bridge problem, notably connects with Stochastic Optimal Control (SOC) and can be solved with the popular Sinkhorn algorithm. In the case of discrete-state spaces, this algorithm is known to have exponential convergence; however, achieving a similar rate of convergence in a more general setting is still an active area of research. In this work, we analyze the convergence of the Sinkhorn algorithm for probability measures defined on the $d$-dimensional torus $\mathbb{T}_L^d$, that admit densities with respect to the Haar measure of $\mathbb{T}_L^d$. In particular, we prove pointwise exponential convergence of Sinkhorn iterates and their gradient. Our proof relies on the connection between these iterates and the evolution along the Hamilton-Jacobi-Bellman equations of value functions obtained from SOC-problems. Our approach is novel in that it is purely probabilistic and relies on coupling by reflection techniques for controlled diffusions on the torus.

We propose a numerical method for the Vlasov-Poisson-Fokker-Planck model written as an hyperbolic system thanks to a spectral decomposition in the basis of Hermite functions with respect to the velocity variable and a structure preserving finite volume scheme for the space variable. On the one hand, we show that this scheme naturally preserves both stationary solutions and linearized free-energy estimate. On the other hand, we adapt previous arguments based on hypocoercivity methods to get quantitative estimates ensuring the exponential relaxation to equilibrium of the discrete solution for the linearized Vlasov-Poisson-Fokker-Planck system, uniformly with respect to both scaling and discretization parameters. Finally, we perform substantial numerical simulations for the nonlinear system to illustrate the efficiency of this approach for a large variety of collisional regimes (plasma echos for weakly collisional regimes and trend to equilibrium for collisional plasmas) and to highlight its robustness (unconditional stability, asymptotic preserving properties).

We study a class of stochastic semilinear damped wave equations driven by additive Wiener noise. Owing to the damping term, under appropriate conditions on the nonlinearity, the solution admits a unique invariant distribution. We apply semi-discrete and fully-discrete methods in order to approximate this invariant distribution, using a spectral Galerkin method and an exponential Euler integrator for spatial and temporal discretization respectively. We prove that the considered numerical schemes also admit unique invariant distributions, and we prove error estimates between the approximate and exact invariant distributions, with identification of the orders of convergence. To the best of our knowledge this is the first result in the literature concerning numerical approximation of invariant distributions for stochastic damped wave equations.

In this work we consider a model problem of deep neural learning, namely the learning of a given function when it is assumed that we have access to its point values on a finite set of points. The deep neural network interpolant is the the resulting approximation of f, which is obtained by a typical machine learning algorithm involving a given DNN architecture and an optimisation step, which is assumed to be solved exactly. These are among the simplest regression algorithms based on neural networks. In this work we introduce a new approach to the estimation of the (generalisation) error and to convergence. Our results include (i) estimates of the error without any structural assumption on the neural networks and under mild regularity assumptions on the learning function f (ii) convergence of the approximations to the target function f by only requiring that the neural network spaces have appropriate approximation capability.

Entropic optimal transport (EOT) presents an effective and computationally viable alternative to unregularized optimal transport (OT), offering diverse applications for large-scale data analysis. In this work, we derive novel statistical bounds for empirical plug-in estimators of the EOT cost and show that their statistical performance in the entropy regularization parameter $\epsilon$ and the sample size $n$ only depends on the simpler of the two probability measures. For instance, under sufficiently smooth costs this yields the parametric rate $n^{-1/2}$ with factor $\epsilon^{-d/2}$, where $d$ is the minimum dimension of the two population measures. This confirms that empirical EOT also adheres to the lower complexity adaptation principle, a hallmark feature only recently identified for unregularized OT. As a consequence of our theory, we show that the empirical entropic Gromov-Wasserstein distance and its unregularized version for measures on Euclidean spaces also obey this principle. Additionally, we comment on computational aspects and complement our findings with Monte Carlo simulations. Our techniques employ empirical process theory and rely on a dual formulation of EOT over a single function class. Crucial to our analysis is the observation that the entropic cost-transformation of a function class does not increase its uniform metric entropy by much.

北京阿比特科技有限公司