亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Tailor-made for massive connectivity and sporadic access, grant-free random access has become a promising candidate access protocol for massive machine-type communications (mMTC). Compared with conventional grant-based protocols, grant-free random access skips the exchange of scheduling information to reduce the signaling overhead, and facilitates sharing of access resources to enhance access efficiency. However, some challenges remain to be addressed in the receiver design, such as unknown identity of active users and multi-user interference (MUI) on shared access resources. In this work, we deal with the problem of joint user activity and data detection for grant-free random access. Specifically, the approximate message passing (AMP) algorithm is first employed to mitigate MUI and decouple the signals of different users. Then, we extend the data symbol alphabet to incorporate the null symbols from inactive users. In this way, the joint user activity and data detection problem is formulated as a clustering problem under the Gaussian mixture model. Furthermore, in conjunction with the AMP algorithm, a variational Bayesian inference based clustering (VBIC) algorithm is developed to solve this clustering problem. Simulation results show that, compared with state-of-art solutions, the proposed AMP-combined VBIC (AMP-VBIC) algorithm achieves a significant performance gain in detection accuracy.

相關內容

The detection and prevention of illegal fishing is critical to maintaining a healthy and functional ecosystem. Recent research on ship detection in satellite imagery has focused exclusively on performance improvements, disregarding detection efficiency. However, the speed and compute cost of vessel detection are essential for a timely intervention to prevent illegal fishing. Therefore, we investigated optimization methods that lower detection time and cost with minimal performance loss. We trained an object detection model based on a convolutional neural network (CNN) using a dataset of satellite images. Then, we designed two efficiency optimizations that can be applied to the base CNN or any other base model. The optimizations consist of a fast, cheap classification model and a statistical algorithm. The integration of the optimizations with the object detection model leads to a trade-off between speed and performance. We studied the trade-off using metrics that give different weight to execution time and performance. We show that by using a classification model the average precision of the detection model can be approximated to 99.5% in 44% of the time or to 92.7% in 25% of the time.

Particle dynamics and multi-agent systems provide accurate dynamical models for studying and forecasting the behavior of complex interacting systems. They often take the form of a high-dimensional system of differential equations parameterized by an interaction kernel that models the underlying attractive or repulsive forces between agents. We consider the problem of constructing a data-based approximation of the interacting forces directly from noisy observations of the paths of the agents in time. The learned interaction kernels are then used to predict the agents behavior over a longer time interval. The approximation developed in this work uses a randomized feature algorithm and a sparse randomized feature approach. Sparsity-promoting regression provides a mechanism for pruning the randomly generated features which was observed to be beneficial when one has limited data, in particular, leading to less overfitting than other approaches. In addition, imposing sparsity reduces the kernel evaluation cost which significantly lowers the simulation cost for forecasting the multi-agent systems. Our method is applied to various examples, including first-order systems with homogeneous and heterogeneous interactions, second order homogeneous systems, and a new sheep swarming system.

We propose to use L\'evy {\alpha}-stable distributions for constructing priors for Bayesian inverse problems. The construction is based on Markov fields with stable-distributed increments. Special cases include the Cauchy and Gaussian distributions, with stability indices {\alpha} = 1, and {\alpha} = 2, respectively. Our target is to show that these priors provide a rich class of priors for modelling rough features. The main technical issue is that the {\alpha}-stable probability density functions do not have closed-form expressions in general, and this limits their applicability. For practical purposes, we need to approximate probability density functions through numerical integration or series expansions. Current available approximation methods are either too time-consuming or do not function within the range of stability and radius arguments needed in Bayesian inversion. To address the issue, we propose a new hybrid approximation method for symmetric univariate and bivariate {\alpha}-stable distributions, which is both fast to evaluate, and accurate enough from a practical viewpoint. Then we use approximation method in the numerical implementation of {\alpha}-stable random field priors. We demonstrate the applicability of the constructed priors on selected Bayesian inverse problems which include the deconvolution problem, and the inversion of a function governed by an elliptic partial differential equation. We also demonstrate hierarchical {\alpha}-stable priors in the one-dimensional deconvolution problem. We employ maximum-a-posterior-based estimation at all the numerical examples. To that end, we exploit the limited-memory BFGS and its bounded variant for the estimator.

The Internet of Medical Things (IoMT) allows the collection of physiological data using sensors, then their transmission to remote servers, permitting physicians and health professionals to analyze these data continuously and permanently. However, on the one hand, this technology faces security risks ranging from violating patient's privacy to their death due to wireless communication exposing these data to interception attacks. Moreover, these data are of particular interest to attackers due to their sensitive and private nature. On the other hand, adopting traditional security, such as cryptography on medical equipment suffering from low computing, storage and energy capacity with heterogeneous communication, represents a challenge. Moreover, these protection methods are ineffective against new attacks and zero-day attacks. Security measures must be adopted to guarantee the integrity, confidentiality and availability of data during collection, transmission, storage and processing. In this context, using Intrusion Detection Systems (IDS) based on Machine Learning (ML) can bring a complementary security solution adapted to the characteristics of IoMT systems. This paper performs a comprehensive survey on how IDS based on ML addresses security and privacy issues in IoMT systems. For this purpose, the generic three layers architecture of IoMT and the security requirement of IoMT systems are provided. Then, the various threats that can affect IoMT security and the advantages, disadvantages, methods, and datasets used in each solution based on ML are identified at the three layers composing IoMT. Finally, some challenges and limitations of applying IDS based on ML at each layer of IoMT are discussed, which can serve as a future research direction.

Machine Learning as a service (MLaaS) permits resource-limited clients to access powerful data analytics services ubiquitously. Despite its merits, MLaaS poses significant concerns regarding the integrity of delegated computation and the privacy of the server's model parameters. To address this issue, Zhang et al. (CCS'20) initiated the study of zero-knowledge Machine Learning (zkML). Few zkML schemes have been proposed afterward; however, they focus on sole ML classification algorithms that may not offer satisfactory accuracy or require large-scale training data and model parameters, which may not be desirable for some applications. We propose ezDPS, a new efficient and zero-knowledge ML inference scheme. Unlike prior works, ezDPS is a zkML pipeline in which the data is processed in multiple stages for high accuracy. Each stage of ezDPS is harnessed with an established ML algorithm that is shown to be effective in various applications, including Discrete Wavelet Transformation, Principal Components Analysis, and Support Vector Machine. We design new gadgets to prove ML operations effectively. We fully implemented ezDPS and assessed its performance on real datasets. Experimental results showed that ezDPS achieves one-to-three orders of magnitude more efficient than the generic circuit-based approach in all metrics while maintaining more desirable accuracy than single ML classification approaches.

Hoist scheduling has become a bottleneck in electroplating industry applications with the development of autonomous devices. Although there are a few approaches proposed to target at the challenging problem, they generally cannot scale to large-scale scheduling problems. In this paper, we formulate the hoist scheduling problem as a new temporal planning problem in the form of adapted PDDL, and propose a novel hierarchical temporal planning approach to efficiently solve the scheduling problem. Additionally, we provide a collection of real-life benchmark instances that can be used to evaluate solution methods for the problem. We exhibit that the proposed approach is able to efficiently find solutions of high quality for large-scale real-life benchmark instances, with comparison to state-of-the-art baselines.

DNN workloads can be scheduled onto DNN accelerators in many different ways: from layer-by-layer scheduling to cross-layer depth-first scheduling (a.k.a. layer fusion, or cascaded execution). This results in a very broad scheduling space, with each schedule leading to varying hardware (HW) costs in terms of energy and latency. To rapidly explore this vast space for a wide variety of hardware architectures, analytical cost models are crucial to estimate scheduling effects on the HW level. However, state-of-the-art cost models are lacking support for exploring the complete depth-first scheduling space, for instance focusing only on activations while ignoring weights, or modeling only DRAM accesses while overlooking on-chip data movements. These limitations prevent researchers from systematically and accurately understanding the depth-first scheduling space. After formalizing this design space, this work proposes a unified modeling framework, DeFiNES, for layer-by-layer and depth-first scheduling to fill in the gaps. DeFiNES enables analytically estimating the hardware cost for possible schedules in terms of both energy and latency, while considering data access at every memory level. This is done for each schedule and HW architecture under study by optimally choosing the active part of the memory hierarchy per unique combination of operand, layer, and feature map tile. The hardware costs are estimated, taking into account both data computation and data copy phases. The analytical cost model is validated against measured data from a taped-out depth-first DNN accelerator, DepFiN, showing good modeling accuracy at the end-to-end neural network level. A comparison with generalized state-of-the-art demonstrates up to 10X better solutions found with DeFiNES.

Linear mixed models (LMMs) are suitable for clustered data and are common in biometrics, medicine, survey statistics and many other fields. In those applications it is essential to carry out a valid inference after selecting a subset of the available variables. We construct confidence sets for the fixed effects in Gaussian LMMs that are based on Lasso-type estimators. Aside from providing confidence regions, this also allows to quantify the joint uncertainty of both variable selection and parameter estimation in the procedure. To show that the resulting confidence sets for the fixed effects are uniformly valid over the parameter spaces of both the regression coefficients and the covariance parameters, we also prove the novel result on uniform Cramer consistency of the restricted maximum likelihood (REML) estimators of the covariance parameters. The superiority of the constructed confidence sets to naive post-selection procedures is validated in simulations and illustrated with a study of the acid neutralization capacity of lakes in the United States.

Sequential recommendation as an emerging topic has attracted increasing attention due to its important practical significance. Models based on deep learning and attention mechanism have achieved good performance in sequential recommendation. Recently, the generative models based on Variational Autoencoder (VAE) have shown the unique advantage in collaborative filtering. In particular, the sequential VAE model as a recurrent version of VAE can effectively capture temporal dependencies among items in user sequence and perform sequential recommendation. However, VAE-based models suffer from a common limitation that the representational ability of the obtained approximate posterior distribution is limited, resulting in lower quality of generated samples. This is especially true for generating sequences. To solve the above problem, in this work, we propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation. Specifically, we first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes (AVB) framework, which enables our model to generate high-quality latent variables. Then, we employ the contrastive loss. The latent variables will be able to learn more personalized and salient characteristics by minimizing the contrastive loss. Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence. Finally, we conduct extensive experiments on four real-world datasets. The experimental results show that our proposed ACVAE model outperforms other state-of-the-art methods.

Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.

北京阿比特科技有限公司