Fake news spread widely on social media in various domains, which lead to real-world threats in many aspects like politics, disasters, and finance. Most existing approaches focus on single-domain fake news detection (SFND), which leads to unsatisfying performance when these methods are applied to multi-domain fake news detection. As an emerging field, multi-domain fake news detection (MFND) is increasingly attracting attention. However, data distributions, such as word frequency and propagation patterns, vary from domain to domain, namely domain shift. Facing the challenge of serious domain shift, existing fake news detection techniques perform poorly for multi-domain scenarios. Therefore, it is demanding to design a specialized model for MFND. In this paper, we first design a benchmark of fake news dataset for MFND with domain label annotated, namely Weibo21, which consists of 4,488 fake news and 4,640 real news from 9 different domains. We further propose an effective Multi-domain Fake News Detection Model (MDFEND) by utilizing a domain gate to aggregate multiple representations extracted by a mixture of experts. The experiments show that MDFEND can significantly improve the performance of multi-domain fake news detection. Our dataset and code are available at //github.com/kennqiang/MDFEND-Weibo21.
The wide dissemination of fake news is increasingly threatening both individuals and society. Fake news detection aims to train a model on the past news and detect fake news of the future. Though great efforts have been made, existing fake news detection methods overlooked the unintended entity bias in the real-world data, which seriously influences models' generalization ability to future data. For example, 97\% of news pieces in 2010-2017 containing the entity `Donald Trump' are real in our data, but the percentage falls down to merely 33\% in 2018. This would lead the model trained on the former set to hardly generalize to the latter, as it tends to predict news pieces about `Donald Trump' as real for lower training loss. In this paper, we propose an entity debiasing framework (\textbf{ENDEF}) which generalizes fake news detection models to the future data by mitigating entity bias from a cause-effect perspective. Based on the causal graph among entities, news contents, and news veracity, we separately model the contribution of each cause (entities and contents) during training. In the inference stage, we remove the direct effect of the entities to mitigate entity bias. Extensive offline experiments on the English and Chinese datasets demonstrate that the proposed framework can largely improve the performance of base fake news detectors, and online tests verify its superiority in practice. To the best of our knowledge, this is the first work to explicitly improve the generalization ability of fake news detection models to the future data. The code has been released at //github.com/ICTMCG/ENDEF-SIGIR2022.
Semi-supervised object detection has recently achieved substantial progress. As a mainstream solution, the self-labeling-based methods train the detector on both labeled data and unlabeled data with pseudo labels predicted by the detector itself, but their performances are always limited. Through experimental analysis, we reveal the underlying reason is that the detector is misguided by the incorrect pseudo labels predicted by itself (dubbed self-errors). These self-errors can hurt performance even worse than random-errors, and can be neither discerned nor rectified during the self-labeling process. In this paper, we propose an effective detection framework named CrossRectify, to obtain accurate pseudo labels by simultaneously training two detectors with different initial parameters. Specifically, the proposed approach leverages the disagreements between detectors to discern the self-errors and refines the pseudo label quality by the proposed cross-rectifying mechanism. Extensive experiments show that CrossRectify achieves outperforming performances over various detector structures on 2D and 3D detection benchmarks.
Massive false rumors emerging along with breaking news or trending topics severely hinder the truth. Existing rumor detection approaches achieve promising performance on the yesterday`s news, since there is enough corpus collected from the same domain for model training. However, they are poor at detecting rumors about unforeseen events especially those propagated in different languages due to the lack of training data and prior knowledge (i.e., low-resource regimes). In this paper, we propose an adversarial contrastive learning framework to detect rumors by adapting the features learned from well-resourced rumor data to that of the low-resourced. Our model explicitly overcomes the restriction of domain and/or language usage via language alignment and a novel supervised contrastive training paradigm. Moreover, we develop an adversarial augmentation mechanism to further enhance the robustness of low-resource rumor representation. Extensive experiments conducted on two low-resource datasets collected from real-world microblog platforms demonstrate that our framework achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.
Domain adaptive object detection (DAOD) is a promising way to alleviate performance drop of detectors in new scenes. Albeit great effort made in single source domain adaptation, a more generalized task with multiple source domains remains not being well explored, due to knowledge degradation during their combination. To address this issue, we propose a novel approach, namely target-relevant knowledge preservation (TRKP), to unsupervised multi-source DAOD. Specifically, TRKP adopts the teacher-student framework, where the multi-head teacher network is built to extract knowledge from labeled source domains and guide the student network to learn detectors in unlabeled target domain. The teacher network is further equipped with an adversarial multi-source disentanglement (AMSD) module to preserve source domain-specific knowledge and simultaneously perform cross-domain alignment. Besides, a holistic target-relevant mining (HTRM) scheme is developed to re-weight the source images according to the source-target relevance. By this means, the teacher network is enforced to capture target-relevant knowledge, thus benefiting decreasing domain shift when mentoring object detection in the target domain. Extensive experiments are conducted on various widely used benchmarks with new state-of-the-art scores reported, highlighting the effectiveness.
Anomaly Detection (AD) on medical images enables a model to recognize any type of anomaly pattern without lesion-specific supervised learning. Data augmentation based methods construct pseudo-healthy images by "pasting" fake lesions on real healthy ones, and a network is trained to predict healthy images in a supervised manner. The lesion can be found by difference between the unhealthy input and pseudo-healthy output. However, using only manually designed fake lesions fail to approximate to irregular real lesions, hence limiting the model generalization. We assume by exploring the intrinsic data property within images, we can distinguish previously unseen lesions from healthy regions in an unhealthy image. In this study, we propose an Adaptive Fourier Space Compression (AFSC) module to distill healthy feature for AD. The compression of both magnitude and phase in frequency domain addresses the hyper intensity and diverse position of lesions. Experimental results on the BraTS and MS-SEG datasets demonstrate an AFSC baseline is able to produce promising detection results, and an AFSC module can be effectively embedded into existing AD methods.
Emotion plays an important role in detecting fake news online. When leveraging emotional signals, the existing methods focus on exploiting the emotions of news contents that conveyed by the publishers (i.e., publisher emotion). However, fake news is always fabricated to evoke high-arousal or activating emotions of people to spread like a virus, so the emotions of news comments that aroused by the crowd (i.e., social emotion) can not be ignored. Furthermore, it needs to be explored whether there exists a relationship between publisher emotion and social emotion (i.e., dual emotion), and how the dual emotion appears in fake news. In the paper, we propose Dual Emotion Features to mine dual emotion and the relationship between them for fake news detection. And we design a universal paradigm to plug it into any existing detectors as an enhancement. Experimental results on three real-world datasets indicate the effectiveness of the proposed features.
Co-saliency detection aims to discover the common and salient foregrounds from a group of relevant images. For this task, we present a novel adaptive graph convolutional network with attention graph clustering (GCAGC). Three major contributions have been made, and are experimentally shown to have substantial practical merits. First, we propose a graph convolutional network design to extract information cues to characterize the intra- and interimage correspondence. Second, we develop an attention graph clustering algorithm to discriminate the common objects from all the salient foreground objects in an unsupervised fashion. Third, we present a unified framework with encoder-decoder structure to jointly train and optimize the graph convolutional network, attention graph cluster, and co-saliency detection decoder in an end-to-end manner. We evaluate our proposed GCAGC method on three cosaliency detection benchmark datasets (iCoseg, Cosal2015 and COCO-SEG). Our GCAGC method obtains significant improvements over the state-of-the-arts on most of them.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
Text in natural images is of arbitrary orientations, requiring detection in terms of oriented bounding boxes. Normally, a multi-oriented text detector often involves two key tasks: 1) text presence detection, which is a classification problem disregarding text orientation; 2) oriented bounding box regression, which concerns about text orientation. Previous methods rely on shared features for both tasks, resulting in degraded performance due to the incompatibility of the two tasks. To address this issue, we propose to perform classification and regression on features of different characteristics, extracted by two network branches of different designs. Concretely, the regression branch extracts rotation-sensitive features by actively rotating the convolutional filters, while the classification branch extracts rotation-invariant features by pooling the rotation-sensitive features. The proposed method named Rotation-sensitive Regression Detector (RRD) achieves state-of-the-art performance on three oriented scene text benchmark datasets, including ICDAR 2015, MSRA-TD500, RCTW-17 and COCO-Text. Furthermore, RRD achieves a significant improvement on a ship collection dataset, demonstrating its generality on oriented object detection.