亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This is a tutorial text giving an advanced introduction to the diagrammatic syntax of monoidal (and Cartesian) closed categories in the style of "functorial boxes". This syntax can be efficiently represented as a data structure which we call hierarchical hypergraphs, the systematic rewriting of which represents a way of deriving abstract machines for higher-order programming languages directly from their operational semantics. To arrive at this main intended application we pay attention in particular to the diagrammatic language of adjunctions and explicit strictifications. Finally, we present new proof techniques made possible by a quasi-canonical presentation of terms in monoidal closed categories called foliations which are useful in the case of complicated program transformations such as automatic differentiation and closure conversion.

相關內容

Procedural content generation (PCG) is a growing field, with numerous applications in the video game industry and great potential to help create better games at a fraction of the cost of manual creation. However, much of the work in PCG is focused on generating relatively straightforward levels in simple games, as it is challenging to design an optimisable objective function for complex settings. This limits the applicability of PCG to more complex and modern titles, hindering its adoption in industry. Our work aims to address this limitation by introducing a compositional level generation method that recursively composes simple low-level generators to construct large and complex creations. This approach allows for easily-optimisable objectives and the ability to design a complex structure in an interpretable way by referencing lower-level components. We empirically demonstrate that our method outperforms a non-compositional baseline by more accurately satisfying a designer's functional requirements in several tasks. Finally, we provide a qualitative showcase (in Minecraft) illustrating the large and complex, but still coherent, structures that were generated using simple base generators.

Inference algorithms for probabilistic programming are complex imperative programs with many moving parts. Efficient inference often requires customising an algorithm to a particular probabilistic model or problem, sometimes called inference programming. Most inference frameworks are implemented in languages that lack a disciplined approach to side effects, which can result in monolithic implementations where the structure of the algorithms is obscured and inference programming is hard. Functional programming with typed effects offers a more structured and modular foundation for programmable inference, with monad transformers being the primary structuring mechanism explored to date. This paper presents an alternative approach to inference programming based on algebraic effects. Using effect signatures to specify the key operations of the algorithms, and effect handlers to modularly interpret those operations for specific variants, we develop two abstract algorithms, or inference patterns, representing two important classes of inference: Metropolis-Hastings and particle filtering. We show how our approach reveals the algorithms' high-level structure, and makes it easy to tailor and recombine their parts into new variants. We implement the two inference patterns as a Haskell library, and discuss the pros and cons of algebraic effects vis-a-vis monad transformers as a structuring mechanism for modular imperative algorithm design.

Decision trees are among the most popular machine learning models and are used routinely in applications ranging from revenue management and medicine to bioinformatics. In this paper, we consider the problem of learning optimal binary classification trees with univariate splits. Literature on the topic has burgeoned in recent years, motivated both by the empirical suboptimality of heuristic approaches and the tremendous improvements in mixed-integer optimization (MIO) technology. Yet, existing MIO-based approaches from the literature do not leverage the power of MIO to its full extent: they rely on weak formulations, resulting in slow convergence and large optimality gaps. To fill this gap in the literature, we propose an intuitive flow-based MIO formulation for learning optimal binary classification trees. Our formulation can accommodate side constraints to enable the design of interpretable and fair decision trees. Moreover, we show that our formulation has a stronger linear optimization relaxation than existing methods in the case of binary data. We exploit the decomposable structure of our formulation and max-flow/min-cut duality to derive a Benders' decomposition method to speed-up computation. We propose a tailored procedure for solving each decomposed subproblem that provably generates facets of the feasible set of the MIO as constraints to add to the main problem. We conduct extensive computational experiments on standard benchmark datasets on which we show that our proposed approaches are 29 times faster than state-of-the-art MIO-based techniques and improve out-of-sample performance by up to 8%.

Support Vector Machines (SVM) have gathered significant acclaim as classifiers due to their successful implementation of Statistical Learning Theory. However, in the context of multiclass and multilabel settings, the reliance on vector-based formulations in existing SVM-based models poses limitations regarding flexibility and ease of incorporating additional terms to handle specific challenges. To overcome these limitations, our research paper focuses on introducing a matrix formulation for SVM that effectively addresses these constraints. By employing the Accelerated Gradient Descent method in the dual, we notably enhance the efficiency of solving the Matrix-SVM problem. Experimental evaluations on multilabel and multiclass datasets demonstrate that Matrix SVM achieves superior time efficacy while delivering similar results to Binary Relevance SVM. Moreover, our matrix formulation unveils crucial insights and advantages that may not be readily apparent in traditional vector-based notations. We emphasize that numerous multilabel models can be viewed as extensions of SVM, with customised modifications to meet specific requirements. The matrix formulation presented in this paper establishes a solid foundation for developing more sophisticated models capable of effectively addressing the distinctive challenges encountered in multilabel learning.

A package query returns a package -- a multiset of tuples -- that maximizes or minimizes a linear objective function subject to linear constraints, thereby enabling in-database decision support. Prior work has established the equivalence of package queries to Integer Linear Programs (ILPs) and developed the SketchRefine algorithm for package query processing. While this algorithm was an important first step toward supporting prescriptive analytics scalably inside a relational database, it struggles when the data size grows beyond a few hundred million tuples or when the constraints become very tight. In this paper, we present Progressive Shading, a novel algorithm for processing package queries that can scale efficiently to billions of tuples and gracefully handle tight constraints. Progressive Shading solves a sequence of optimization problems over a hierarchy of relations, each resulting from an ever-finer partitioning of the original tuples into homogeneous groups until the original relation is obtained. This strategy avoids the premature discarding of high-quality tuples that can occur with SketchRefine. Our novel partitioning scheme, Dynamic Low Variance, can handle very large relations with multiple attributes and can dynamically adapt to both concentrated and spread-out sets of attribute values, provably outperforming traditional partitioning schemes such as KD-Tree. We further optimize our system by replacing our off-the-shelf optimization software with customized ILP and LP solvers, called Dual Reducer and Parallel Dual Simplex respectively, that are highly accurate and orders of magnitude faster.

We investigate trade-offs in static and dynamic evaluation of hierarchical queries with arbitrary free variables. In the static setting, the trade-off is between the time to partially compute the query result and the delay needed to enumerate its tuples. In the dynamic setting, we additionally consider the time needed to update the query result under single-tuple inserts or deletes to the database. Our approach observes the degree of values in the database and uses different computation and maintenance strategies for high-degree (heavy) and low-degree (light) values. For the latter it partially computes the result, while for the former it computes enough information to allow for on-the-fly enumeration. We define the preprocessing time, the update time, and the enumeration delay as functions of the light/heavy threshold. By appropriately choosing this threshold, our approach recovers a number of prior results when restricted to hierarchical queries. We show that for a restricted class of hierarchical queries, our approach achieves worst-case optimal update time and enumeration delay conditioned on the Online Matrix-Vector Multiplication Conjecture.

Following our recent development of a compositional model checking algorithm for Markov decision processes, we present a compositional framework for solving mean payoff games (MPGs). The framework is derived from category theory, specifically that of monoidal categories: MPGs (extended with open ends) get composed in so-called string diagrams and thus organized in a monoidal category; their solution is then expressed as a functor, whose preservation properties embody compositionality. As usual, the key question to compositionality is how to enrich the semantic domain; the categorical framework gives an informed guidance in solving the question by singling out the algebraic structure required in the extended semantic domain. We implemented our compositional solution in Haskell; depending on benchmarks, it can outperform an existing algorithm by an order of magnitude.

Short-range wireless technologies will enable vehicles to communicate and coordinate their actions, thus improving people's safety and traffic efficiency. Whereas IEEE 802.11p (and related standards) had been the only practical solution for years, in 2016 a new option was introduced with Release 14 of long term evolution (LTE), which includes new features to enable direct vehicle-to-vehicle (V2V) communications. LTE-V2V promises a more efficient use of the channel compared to IEEE 802.11p thanks to an improved PHY layer and the use of orthogonal resources at the MAC layer. In LTE-V2V, a key role is played by the resource allocation algorithm and increasing efforts are being made to design new solutions to optimize the spatial reuse.In this context, an important aspect still little studied, is therefore that of identifying references that allow: 1) to have a perception of the space in which the resource allocation algorithms move; and 2) to verify the performance of new proposals. In this work, we focus on a highway scenario and identify two algorithms to be used as a minimum and maximum reference in terms of the packet reception probability (PRP). The PRP is derived as a function of various parameters that describe the scenario and settings, from the application to the physical layer. Results, obtained both in a simplified Poisson point process scenario and with realistic traffic traces, show that the PRP varies considerably with different algorithms and that there is room for the improvement of current solutions.

Recommender system is one of the most important information services on today's Internet. Recently, graph neural networks have become the new state-of-the-art approach of recommender systems. In this survey, we conduct a comprehensive review of the literature in graph neural network-based recommender systems. We first introduce the background and the history of the development of both recommender systems and graph neural networks. For recommender systems, in general, there are four aspects for categorizing existing works: stage, scenario, objective, and application. For graph neural networks, the existing methods consist of two categories, spectral models and spatial ones. We then discuss the motivation of applying graph neural networks into recommender systems, mainly consisting of the high-order connectivity, the structural property of data, and the enhanced supervision signal. We then systematically analyze the challenges in graph construction, embedding propagation/aggregation, model optimization, and computation efficiency. Afterward and primarily, we provide a comprehensive overview of a multitude of existing works of graph neural network-based recommender systems, following the taxonomy above. Finally, we raise discussions on the open problems and promising future directions of this area. We summarize the representative papers along with their codes repositories in //github.com/tsinghua-fib-lab/GNN-Recommender-Systems.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

北京阿比特科技有限公司