亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a novel framework for global localization and guided relocalization of a vehicle in an unstructured environment. Compared to existing methods, our pipeline does not rely on cues from urban fixtures (e.g., lane markings, buildings), nor does it make assumptions that require the vehicle to be navigating on a road network. Instead, we achieve localization in both urban and non-urban environments by robustly associating and registering the vehicle's local semantic object map with a compact semantic reference map, potentially built from other viewpoints, time periods, and/or modalities. Robustness to noise, outliers, and missing objects is achieved through our graph-based data association algorithm. Further, the guided relocalization capability of our pipeline mitigates drift inherent in odometry-based localization after the initial global localization. We evaluate our pipeline on two publicly-available, real-world datasets to demonstrate its effectiveness at global localization in both non-urban and urban environments. The Katwijk Beach Planetary Rover dataset is used to show our pipeline's ability to perform accurate global localization in unstructured environments. Demonstrations on the KITTI dataset achieve an average pose error of 3.8m across all 35 localization events on Sequence 00 when localizing in a reference map created from aerial images. Compared to existing works, our pipeline is more general because it can perform global localization in unstructured environments using maps built from different viewpoints.

相關內容

As advanced V2X applications emerge in the connected and autonomous vehicle (CAV), the data communications between in-vehicle end-devices and outside nodes increase, which make the end-to-end (E2E) security to in-vehicle end-devices as the urgent issue to be handled. However, the E2E security with fine-grained access control still remains as a challenging issue for resource-constrained end-devices since the existing security solutions require complicated key management and high resource consumption. Therefore, we propose a practical and secure vehicular communication protocol for the E2E security based on a new attribute-based encryption (ABE) scheme. In our scheme, the outsourced computation is provided for encryption, and the computation cost for decryption constantly remains small, regardless of the number of attributes. The policy privacy can be ensured by the proposed ABE to support privacy-sensitive V2X applications, and the existing identity-based signature for outsourced signing is newly reconstructed. Our scheme achieves the confidentiality, message authentication, identity anonymity, unlinkability, traceability, and reconfigurable outsourced computation, and we also show the practical feasibility of our protocol via the performance evaluation.

Recent advances in 3D fabrication have allowed handling the memory bottlenecks for modern data-intensive applications by bringing the computation closer to the memory, enabling Near Memory Processing (NMP). Memory Centric Networks (MCN) are advanced memory architectures that use NMP architectures, where multiple stacks of the 3D memory units are equipped with simple processing cores, allowing numerous threads to execute concurrently. The performance of the NMP is crucially dependent upon the efficient task offloading and task-to-NMP allocation. Our work presents a multi-armed bandit (MAB) based approach in formulating an efficient resource allocation strategy for MCN. Most existing literature concentrates only on one application domain and optimizing only one metric, i.e., either execution time or power. However, our solution is more generic and can be applied to diverse application domains. In our approach, we deploy Upper Confidence Bound (UCB) policy to collect rewards and eventually use it for regret optimization. We study the following metrics: instructions per cycle, execution times, NMP core cache misses, packet latencies, and power consumption. Our study covers various applications from PARSEC and SPLASH2 benchmarks suite. The evaluation shows that the system's performance improves by ~11% on average and an average reduction in total power consumption by ~12%.

Our research addresses class imbalance issues in heterogeneous graphs using graph neural networks (GNNs). We propose a novel method combining the strengths of Generative Adversarial Networks (GANs) with GNNs, creating synthetic nodes and edges that effectively balance the dataset. This approach directly targets and rectifies imbalances at the data level. The proposed framework resolves issues such as neglecting graph structures during data generation and creating synthetic structures usable with GNN-based classifiers in downstream tasks. It processes node and edge information concurrently, improving edge balance through node augmentation and subgraph sampling. Additionally, our framework integrates a threshold strategy, aiding in determining optimal edge thresholds during training without time-consuming parameter adjustments. Experiments on the Amazon and Yelp Review datasets highlight the effectiveness of the framework we proposed, especially in minority node identification, where it consistently outperforms baseline models across key performance metrics, demonstrating its potential in the field.

AI-Generated Content (AIGC), as a novel manner of providing Metaverse services in the forthcoming Internet paradigm, can resolve the obstacles of immersion requirements. Concurrently, edge computing, as an evolutionary paradigm of computing in communication systems, effectively augments real-time interactive services. In pursuit of enhancing the accessibility of AIGC services, the deployment of AIGC models (e.g., diffusion models) to edge servers and local devices has become a prevailing trend. Nevertheless, this approach faces constraints imposed by battery life and computational resources when tasks are offloaded to local devices, limiting the capacity to deliver high-quality content to users while adhering to stringent latency requirements. So there will be a tradeoff between the utility of AIGC models and offloading decisions in the edge computing paradigm. This paper proposes a joint optimization algorithm for offloading decisions, computation time, and diffusion steps of the diffusion models in the reverse diffusion stage. Moreover, we take the average error into consideration as the metric for evaluating the quality of the generated results. Experimental results conclusively demonstrate that the proposed algorithm achieves superior joint optimization performance compared to the baselines.

Learning from human preferences is crucial for language models (LMs) to effectively cater to human needs and societal values. Previous research has made notable progress by leveraging human feedback to follow instructions. However, these approaches rely primarily on online learning techniques like Proximal Policy Optimization (PPO), which have been proven unstable and challenging to tune for language models. Moreover, PPO requires complex distributed system implementation, hindering the efficiency of large-scale distributed training. In this study, we propose an offline learning from human feedback framework to align LMs without interacting with environments. Specifically, we explore filtering alignment (FA), reward-weighted regression (RWR), and conditional alignment (CA) to align language models to human preferences. By employing a loss function similar to supervised fine-tuning, our methods ensure more stable model training than PPO with a simple machine learning system~(MLSys) and much fewer (around 9\%) computing resources. Experimental results demonstrate that conditional alignment outperforms other offline alignment methods and is comparable to PPO.

This article addresses the obstacle avoidance problem for setpoint stabilization and path-following tasks in complex dynamic 2D environments that go beyond conventional scenes with isolated convex obstacles. A combined motion planner and controller is proposed for setpoint stabilization that integrates the favorable convergence characteristics of closed-form motion planning techniques with the intuitive representation of system constraints through Model Predictive Control (MPC). The method is analytically proven to accomplish collision avoidance and convergence under certain conditions, and it is extended to path-following control. Various simulation scenarios using a non-holonomic unicycle robot are provided to showcase the efficacy of the control scheme and its improved convergence results compared to standard path-following MPC approaches with obstacle avoidance.

Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at //github.com/hyintell/awesome-refreshing-llms

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Most recent semantic segmentation methods adopt a fully-convolutional network (FCN) with an encoder-decoder architecture. The encoder progressively reduces the spatial resolution and learns more abstract/semantic visual concepts with larger receptive fields. Since context modeling is critical for segmentation, the latest efforts have been focused on increasing the receptive field, through either dilated/atrous convolutions or inserting attention modules. However, the encoder-decoder based FCN architecture remains unchanged. In this paper, we aim to provide an alternative perspective by treating semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer (ie, without convolution and resolution reduction) to encode an image as a sequence of patches. With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR). Extensive experiments show that SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes. Particularly, we achieve the first (44.42% mIoU) position in the highly competitive ADE20K test server leaderboard.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

北京阿比特科技有限公司