亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This article addresses the obstacle avoidance problem for setpoint stabilization and path-following tasks in complex dynamic 2D environments that go beyond conventional scenes with isolated convex obstacles. A combined motion planner and controller is proposed for setpoint stabilization that integrates the favorable convergence characteristics of closed-form motion planning techniques with the intuitive representation of system constraints through Model Predictive Control (MPC). The method is analytically proven to accomplish collision avoidance and convergence under certain conditions, and it is extended to path-following control. Various simulation scenarios using a non-holonomic unicycle robot are provided to showcase the efficacy of the control scheme and its improved convergence results compared to standard path-following MPC approaches with obstacle avoidance.

相關內容

Sequential neural posterior estimation (SNPE) techniques have been recently proposed for dealing with simulation-based models with intractable likelihoods. They are devoted to learning the posterior from adaptively proposed simulations using neural network-based conditional density estimators. As a SNPE technique, the automatic posterior transformation (APT) method proposed by Greenberg et al. (2019) performs notably and scales to high dimensional data. However, the APT method bears the computation of an expectation of the logarithm of an intractable normalizing constant, i.e., a nested expectation. Although atomic APT was proposed to solve this by discretizing the normalizing constant, it remains challenging to analyze the convergence of learning. In this paper, we propose a nested APT method to estimate the involved nested expectation instead. This facilitates establishing the convergence analysis. Since the nested estimators for the loss function and its gradient are biased, we make use of unbiased multi-level Monte Carlo (MLMC) estimators for debiasing. To further reduce the excessive variance of the unbiased estimators, this paper also develops some truncated MLMC estimators by taking account of the trade-off between the bias and the average cost. Numerical experiments for approximating complex posteriors with multimodal in moderate dimensions are provided.

Language models (LMs) have already demonstrated remarkable abilities in understanding and generating both natural and formal language. Despite these advances, their integration with real-world environments such as large-scale knowledge bases (KBs) remains an underdeveloped area, affecting applications such as semantic parsing and indulging in "hallucinated" information. This paper is an experimental investigation aimed at uncovering the robustness challenges that LMs encounter when tasked with knowledge base question answering (KBQA). The investigation covers scenarios with inconsistent data distribution between training and inference, such as generalization to unseen domains, adaptation to various language variations, and transferability across different datasets. Our comprehensive experiments reveal that even when employed with our proposed data augmentation techniques, advanced small and large language models exhibit poor performance in various dimensions. While the LM is a promising technology, the robustness of the current form in dealing with complex environments is fragile and of limited practicality because of the data distribution issue. This calls for future research on data collection and LM learning paradims.

In hypothesis testing problems, taking samples sequentially and stopping opportunistically to make the inference greatly enhances the reliability. The design of the stopping and inference policy, however, critically relies on the knowledge of the underlying distribution of each hypothesis. When the knowledge of distributions, say, $P_0$ and $P_1$ in the binary-hypothesis case, is replaced by empirically observed statistics from the respective distributions, the gain of sequentiality is less understood when subject to universality constraints. In this work, the gap is mended by a unified study on sequentiality in the universal binary classification problem. We propose a unified framework where the universality constraints are set on the expected stopping time as well as the type-I error exponent. The type-I error exponent is required to achieve a pre-set distribution-dependent constraint $\lambda(P_0,P_1)$ for all $P_0,P_1$. The framework is employed to investigate a semi-sequential and a fully-sequential setup, so that fair comparison can be made with the fixed-length setup. The optimal type-II error exponents in different setups are characterized when the function $\lambda$ satisfies mild continuity conditions. The benefit of sequentiality is shown by comparing the semi-sequential, the fully-sequential, and the fixed-length cases in representative examples of $\lambda$. Conditions under which sequentiality eradicates the trade-off between error exponents are also derived.

This work addresses the development of a physics-informed neural network (PINN) with a loss term derived from a discretized time-dependent reduced-order system. In this work, first, the governing equations are discretized using a finite difference scheme (whereas, any other discretization technique can be adopted), then projected on a reduced or latent space using the Proper Orthogonal Decomposition (POD)-Galerkin approach and next, the residual arising from discretized reduced order equation is considered as an additional loss penalty term alongside the data-driven loss term using different variants of deep learning method such as Artificial neural network (ANN), Long Short-Term Memory based neural network (LSTM). The LSTM neural network has been proven to be very effective for time-dependent problems in a purely data-driven environment. The current work demonstrates the LSTM network's potential over ANN networks in physics-informed neural networks (PINN) as well. The potential of using discretized governing equations instead of continuous form lies in the flexibility of input to the PINN. Different sizes of data ranging from small, medium to big datasets are used to assess the potential of discretized-physics-informed neural networks when there is very sparse or no data available. The proposed methods are applied to a pitch-plunge airfoil motion governed by rigid-body dynamics and a one-dimensional viscous Burgers' equation. The current work also demonstrates the prediction capability of various discretized-physics-informed neural networks outside the domain where the data is available or governing equation-based residuals are minimized.

The performance of data fusion and tracking algorithms often depends on parameters that not only describe the sensor system, but can also be task-specific. While for the sensor system tuning these variables is time-consuming and mostly requires expert knowledge, intrinsic parameters of targets under track can even be completely unobservable until the system is deployed. With state-of-the-art sensor systems growing more and more complex, the number of parameters naturally increases, necessitating the automatic optimization of the model variables. In this paper, the parameters of an interacting multiple model (IMM) filter are optimized solely using measurements, thus without necessity for any ground-truth data. The resulting method is evaluated through an ablation study on simulated data, where the trained model manages to match the performance of a filter parametrized with ground-truth values.

Recommender systems have seen significant advancements with the influence of deep learning and graph neural networks, particularly in capturing complex user-item relationships. However, these graph-based recommenders heavily depend on ID-based data, potentially disregarding valuable textual information associated with users and items, resulting in less informative learned representations. Moreover, the utilization of implicit feedback data introduces potential noise and bias, posing challenges for the effectiveness of user preference learning. While the integration of large language models (LLMs) into traditional ID-based recommenders has gained attention, challenges such as scalability issues, limitations in text-only reliance, and prompt input constraints need to be addressed for effective implementation in practical recommender systems. To address these challenges, we propose a model-agnostic framework RLMRec that aims to enhance existing recommenders with LLM-empowered representation learning. It proposes a recommendation paradigm that integrates representation learning with LLMs to capture intricate semantic aspects of user behaviors and preferences. RLMRec incorporates auxiliary textual signals, develops a user/item profiling paradigm empowered by LLMs, and aligns the semantic space of LLMs with the representation space of collaborative relational signals through a cross-view alignment framework. This work further establish a theoretical foundation demonstrating that incorporating textual signals through mutual information maximization enhances the quality of representations. In our evaluation, we integrate RLMRec with state-of-the-art recommender models, while also analyzing its efficiency and robustness to noise data. Our implementation codes are available at //github.com/HKUDS/RLMRec.

Additive spatial statistical models with weakly stationary process assumptions have become standard in spatial statistics. However, one disadvantage of such models is the computation time, which rapidly increases with the number of data points. The goal of this article is to apply an existing subsampling strategy to standard spatial additive models and to derive the spatial statistical properties. We call this strategy the "spatial data subset model" (SDSM) approach, which can be applied to big datasets in a computationally feasible way. Our approach has the advantage that one does not require any additional restrictive model assumptions. That is, computational gains increase as model assumptions are removed when using our model framework. This provides one solution to the computational bottlenecks that occur when applying methods such as Kriging to "big data". We provide several properties of this new spatial data subset model approach in terms of moments, sill, nugget, and range under several sampling designs. An advantage of our approach is that it subsamples without throwing away data, and can be implemented using datasets of any size that can be stored. We present the results of the spatial data subset model approach on simulated datasets, and on a large dataset consists of 150,000 observations of daytime land surface temperatures measured by the MODIS instrument onboard the Terra satellite.

AI recommender systems are sought for decision support by providing suggestions to operators responsible for making final decisions. However, these systems are typically considered black boxes, and are often presented without any context or insight into the underlying algorithm. As a result, recommender systems can lead to miscalibrated user reliance and decreased situation awareness. Recent work has focused on improving the transparency of recommender systems in various ways such as improving the recommender's analysis and visualization of the figures of merit, providing explanations for the recommender's decision, as well as improving user training or calibrating user trust. In this paper, we introduce an alternative transparency technique of structuring the order in which contextual information and the recommender's decision are shown to the human operator. This technique is designed to improve the operator's situation awareness and therefore the shared situation awareness between the operator and the recommender system. This paper presents the results of a two-phase between-subjects study in which participants and a recommender system jointly make a high-stakes decision. We varied the amount of contextual information the participant had, the assessment technique of the figures of merit, and the reliability of the recommender system. We found that providing contextual information upfront improves the team's shared situation awareness by improving the human decision maker's initial and final judgment, as well as their ability to discern the recommender's error boundary. Additionally, this technique accurately calibrated the human operator's trust in the recommender. This work proposes and validates a way to provide model-agnostic transparency into AI systems that can support the human decision maker and lead to improved team performance.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司