In medical and epidemiological studies, one of the most common settings is studying the effect of a treatment on a time-to-event outcome, where the time-to-event might be censored before end of study. A common parameter of interest in such a setting is the marginal hazard ratio (MHR). When a study is based on observational data, propensity score (PS) based methods are often used, in an attempt to make the treatment groups comparable despite having a non-randomized treatment. Previous studies have shown censoring to be a factor that induces bias when using PS based estimators. In this paper we study the magnitude of the bias under different rates of non-informative censoring when estimating MHR using PS weighting or PS matching. A bias correction involving the probability of event is suggested and compared to conventional PS based methods.
Advancements in clinical treatment are increasingly constrained by the limitations of supervised learning techniques, which depend heavily on large volumes of annotated data. The annotation process is not only costly but also demands substantial time from clinical specialists. Addressing this issue, we introduce the S4MI (Self-Supervision and Semi-Supervision for Medical Imaging) pipeline, a novel approach that leverages advancements in self-supervised and semi-supervised learning. These techniques engage in auxiliary tasks that do not require labeling, thus simplifying the scaling of machine supervision compared to fully-supervised methods. Our study benchmarks these techniques on three distinct medical imaging datasets to evaluate their effectiveness in classification and segmentation tasks. Notably, we observed that self supervised learning significantly surpassed the performance of supervised methods in the classification of all evaluated datasets. Remarkably, the semi-supervised approach demonstrated superior outcomes in segmentation, outperforming fully-supervised methods while using 50% fewer labels across all datasets. In line with our commitment to contributing to the scientific community, we have made the S4MI code openly accessible, allowing for broader application and further development of these methods.
The study of complex networks has significantly advanced our understanding of community structures which serves as a crucial feature of real-world graphs. Detecting communities in graphs is a challenging problem with applications in sociology, biology, and computer science. Despite the efforts of an interdisciplinary community of scientists, a satisfactory solution to this problem has not yet been achieved. This review article delves into the topic of community detection in graphs, which serves as a thorough exposition of various community detection methods from perspectives of modularity-based method, spectral clustering, probabilistic modelling, and deep learning. Along with the methods, a new community detection method designed by us is also presented. Additionally, the performance of these methods on the datasets with and without ground truth is compared. In conclusion, this comprehensive review provides a deep understanding of community detection in graphs.
The existence of adversarial attacks on machine learning models imperceptible to a human is still quite a mystery from a theoretical perspective. In this work, we introduce two notions of adversarial attacks: natural or on-manifold attacks, which are perceptible by a human/oracle, and unnatural or off-manifold attacks, which are not. We argue that the existence of the off-manifold attacks is a natural consequence of the dimension gap between the intrinsic and ambient dimensions of the data. For 2-layer ReLU networks, we prove that even though the dimension gap does not affect generalization performance on samples drawn from the observed data space, it makes the clean-trained model more vulnerable to adversarial perturbations in the off-manifold direction of the data space. Our main results provide an explicit relationship between the $\ell_2,\ell_{\infty}$ attack strength of the on/off-manifold attack and the dimension gap.
Prior research has found that differences in the early period of neural network training significantly impact the performance of in-distribution (ID) tasks. However, neural networks are often sensitive to out-of-distribution (OOD) data, making them less reliable in downstream applications. Yet, the impact of the early training period on OOD generalization remains understudied due to its complexity and lack of effective analytical methodologies. In this work, we investigate the relationship between learning dynamics and OOD generalization during the early period of neural network training. We utilize the trace of Fisher Information and sharpness, with a focus on gradual unfreezing (i.e. progressively unfreezing parameters during training) as the methodology for investigation. Through a series of empirical experiments, we show that 1) selecting the number of trainable parameters at different times during training, i.e. realized by gradual unfreezing -- has a minuscule impact on ID results, but greatly affects the generalization to OOD data; 2) the absolute values of sharpness and trace of Fisher Information at the initial period of training are not indicative for OOD generalization, but the relative values could be; 3) the trace of Fisher Information and sharpness may be used as indicators for the removal of interventions during early period of training for better OOD generalization.
A large fraction of total healthcare expenditure occurs due to end-of-life (EOL) care, which means it is important to study the problem of more carefully incentivizing necessary versus unnecessary EOL care because this has the potential to reduce overall healthcare spending. This paper introduces a principal-agent model that integrates a mixed payment system of fee-for-service and pay-for-performance in order to analyze whether it is possible to better align healthcare provider incentives with patient outcomes and cost-efficiency in EOL care. The primary contributions are to derive optimal contracts for EOL care payments using a principal-agent framework under three separate models for the healthcare provider, where each model considers a different level of risk tolerance for the provider. We derive these optimal contracts by converting the underlying principal-agent models from a bilevel optimization problem into a single-level optimization problem that can be analytically solved. Our results are demonstrated using a simulation where an optimal contract is used to price intracranial pressure monitoring for traumatic brain injuries.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural network's prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.
Human doctors with well-structured medical knowledge can diagnose a disease merely via a few conversations with patients about symptoms. In contrast, existing knowledge-grounded dialogue systems often require a large number of dialogue instances to learn as they fail to capture the correlations between different diseases and neglect the diagnostic experience shared among them. To address this issue, we propose a more natural and practical paradigm, i.e., low-resource medical dialogue generation, which can transfer the diagnostic experience from source diseases to target ones with a handful of data for adaptation. It is capitalized on a commonsense knowledge graph to characterize the prior disease-symptom relations. Besides, we develop a Graph-Evolving Meta-Learning (GEML) framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease, which effectively alleviates the needs of a large number of dialogues. More importantly, by dynamically evolving disease-symptom graphs, GEML also well addresses the real-world challenges that the disease-symptom correlations of each disease may vary or evolve along with more diagnostic cases. Extensive experiment results on the CMDD dataset and our newly-collected Chunyu dataset testify the superiority of our approach over state-of-the-art approaches. Besides, our GEML can generate an enriched dialogue-sensitive knowledge graph in an online manner, which could benefit other tasks grounded on knowledge graph.