Artificial Intelligence (AI) systems have made remarkable progress, attaining super-human performance across various domains. This presents us with an opportunity to further human knowledge and improve human expert performance by leveraging the hidden knowledge encoded within these highly performant AI systems. Yet, this knowledge is often hard to extract, and may be hard to understand or learn from. Here, we show that this is possible by proposing a new method that allows us to extract new chess concepts in AlphaZero, an AI system that mastered the game of chess via self-play without human supervision. Our analysis indicates that AlphaZero may encode knowledge that extends beyond the existing human knowledge, but knowledge that is ultimately not beyond human grasp, and can be successfully learned from. In a human study, we show that these concepts are learnable by top human experts, as four top chess grandmasters show improvements in solving the presented concept prototype positions. This marks an important first milestone in advancing the frontier of human knowledge by leveraging AI; a development that could bear profound implications and help us shape how we interact with AI systems across many AI applications.
The critique paper provides an in-depth analysis of two influential studies in the field of Human-Autonomous Teams (HATs). Musick et al. explored qualitative dimensions of HAT dynamics, examining the influence of team composition on emotions, cognitive processes, and the development of team cognition. Their research revealed that teams with a majority of human members, known as Multi-Human HATs, generally surpass Multi-Agent HATs in performance, highlighting the critical influence of human perception on team dynamics. Employing qualitative interview analysis anchored in theoretical frameworks, Musick et al. captured the detailed subtleties of participants' experiences. In contrast, Schelble et al. utilized a quantitative methodology to provide data-driven insights into how the perception of AI teammates affects team performance. Despite the rich insights from Musick et al.'s qualitative research, their findings face limitations in terms of broader applicability. Both Musick et al. and Schelble et al. agree in their conclusions that Multi-Human HATs typically outperform their Multi-Agent counterparts, again emphasizing the crucial role of human perception in team dynamics. The critique paper suggests that future research should focus on understanding perceptions of teams heavily reliant on AI. Such investigations could illuminate how trust and skepticism are shaped in teams where AI plays a dominant role.
This paper presents EdgeSAM, an accelerated variant of the Segment Anything Model (SAM), optimized for efficient execution on edge devices with minimal compromise in performance. Our approach involves distilling the original ViT-based SAM image encoder into a purely CNN-based architecture, better suited for edge devices. We carefully benchmark various distillation strategies and demonstrate that task-agnostic encoder distillation fails to capture the full knowledge embodied in SAM. To overcome this bottleneck, we include both the prompt encoder and mask decoder in the distillation process, with box and point prompts in the loop, so that the distilled model can accurately capture the intricate dynamics between user input and mask generation. To mitigate dataset bias issues stemming from point prompt distillation, we incorporate a lightweight module within the encoder. EdgeSAM achieves a 40-fold speed increase compared to the original SAM, and it also outperforms MobileSAM, being 14 times as fast when deployed on edge devices while enhancing the mIoUs on COCO and LVIS by 2.3 and 3.2 respectively. It is also the first SAM variant that can run at over 30 FPS on an iPhone 14. Code and models are available at //github.com/chongzhou96/EdgeSAM.
Recently, the development and progress of Large Language Models (LLMs) have amazed the entire Artificial Intelligence community. Benefiting from their emergent abilities, LLMs have attracted more and more researchers to study their capabilities and performance on various downstream Natural Language Processing (NLP) tasks. While marveling at LLMs' incredible performance on all kinds of tasks, we notice that they also have excellent multilingual processing capabilities, such as Chinese. To explore the Chinese processing ability of LLMs, we focus on Chinese Text Correction, a fundamental and challenging Chinese NLP task. Specifically, we evaluate various representative LLMs on the Chinese Grammatical Error Correction (CGEC) and Chinese Spelling Check (CSC) tasks, which are two main Chinese Text Correction scenarios. Additionally, we also fine-tune LLMs for Chinese Text Correction to better observe the potential capabilities of LLMs. From extensive analyses and comparisons with previous state-of-the-art small models, we empirically find that the LLMs currently have both amazing performance and unsatisfactory behavior for Chinese Text Correction. We believe our findings will promote the landing and application of LLMs in the Chinese NLP community.
As a promising approach to deal with distributed data, Federated Learning (FL) achieves major advancements in recent years. FL enables collaborative model training by exploiting the raw data dispersed in multiple edge devices. However, the data is generally non-independent and identically distributed, i.e., statistical heterogeneity, and the edge devices significantly differ in terms of both computation and communication capacity, i.e., system heterogeneity. The statistical heterogeneity leads to severe accuracy degradation while the system heterogeneity significantly prolongs the training process. In order to address the heterogeneity issue, we propose an Asynchronous Staleness-aware Model Update FL framework, i.e., FedASMU, with two novel methods. First, we propose an asynchronous FL system model with a dynamical model aggregation method between updated local models and the global model on the server for superior accuracy and high efficiency. Then, we propose an adaptive local model adjustment method by aggregating the fresh global model with local models on devices to further improve the accuracy. Extensive experimentation with 6 models and 5 public datasets demonstrates that FedASMU significantly outperforms baseline approaches in terms of accuracy (0.60% to 23.90% higher) and efficiency (3.54% to 97.98% faster).
Time series forecasting (TSF) holds significant importance in modern society, spanning numerous domains. Previous representation learning-based TSF algorithms typically embrace a contrastive learning paradigm featuring segregated trend-periodicity representations. Yet, these methodologies disregard the inherent high-impact noise embedded within time series data, resulting in representation inaccuracies and seriously demoting the forecasting performance. To address this issue, we propose CLeaRForecast, a novel contrastive learning framework to learn high-purity time series representations with proposed sample, feature, and architecture purifying methods. More specifically, to avoid more noise adding caused by the transformations of original samples (series), transformations are respectively applied for trendy and periodic parts to provide better positive samples with obviously less noise. Moreover, we introduce a channel independent training manner to mitigate noise originating from unrelated variables in the multivariate series. By employing a streamlined deep-learning backbone and a comprehensive global contrastive loss function, we prevent noise introduction due to redundant or uneven learning of periodicity and trend. Experimental results show the superior performance of CLeaRForecast in various downstream TSF tasks.
Large Language Models (LLMs) stand out for their impressive performance in intricate language modeling tasks. However, their demanding computational and memory needs pose obstacles for broad use on edge devices. Quantization is then introduced to boost LLMs' on-device efficiency. Recent works show that 8-bit or lower weight quantization is feasible with minimal impact on end-to-end task performance, while the activation is still not quantized. On the other hand, mainstream commodity edge devices still struggle to execute these sub-8-bit quantized networks effectively. In this paper, we propose Agile-Quant, an activation-guided quantization framework for popular Large Language Models (LLMs), and implement an end-to-end accelerator on multiple edge devices for faster inference. Considering the hardware profiling and activation analysis, we first introduce a basic activation quantization strategy to balance the trade-off of task performance and real inference speed. Then we leverage the activation-aware token pruning technique to reduce the outliers and the adverse impact on attentivity. Ultimately, we utilize the SIMD-based 4-bit multiplier and our efficient TRIP matrix multiplication to implement the accelerator for LLMs on the edge. We apply our framework on different scales of LLMs including LLaMA, OPT, and BLOOM with 4-bit or 8-bit for the activation and 4-bit for the weight quantization. Experiments show that Agile-Quant achieves simultaneous quantization of model weights and activations while maintaining task performance comparable to existing weight-only quantization methods. Moreover, in the 8- and 4-bit scenario, Agile-Quant achieves an on-device speedup of up to 2.55x compared to its FP16 counterparts across multiple edge devices, marking a pioneering advancement in this domain.
Large Language Models (LLMs) have demonstrated remarkable potential in code generation. The integration of Chain of Thought (CoT) reasoning can further boost their performance. However, current CoT methods often require manual writing or LLMs with over 100 billion parameters to generate, impeding their applicability in resource-constrained scenarios. In this study, we investigate lightweight Language Models (lLMs), which are defined to have fewer than 10 billion parameters. Empirically, we find that most lLMs cannot generate high-quality CoTs when prompted by the few-shot method, but can take advantage of high-quality CoTs generated elsewhere to improve their performance in code generation. Based on these findings, we design a novel approach COTTON which can leverage lLMs to automatically generate CoTs for code generation. We synthesize new datasets and conduct extensive experiments on various benchmarks. The results show that the CoTs generated by COTTON outperform the baselines in terms of automated and human evaluation metrics. In particular, the CoTs generated by COTTON boost various lLMs to achieve higher performance gains than those generated by LLMs such as ChatGLM (130B), and are competitive with those generated by gpt-3.5-turbo (175B). Our study also showcases the potential of lLMs in software engineering applications.
Task-Oriented Dialogue (TOD) systems have become crucial components in interactive artificial intelligence applications. While recent advances have capitalized on pre-trained language models (PLMs), they exhibit limitations regarding transparency and controllability. To address these challenges, we propose a novel approach focusing on inferring the TOD-Flow graph from dialogue data annotated with dialog acts, uncovering the underlying task structure in the form of a graph. The inferred TOD-Flow graph can be easily integrated with any dialogue model to improve its prediction performance, transparency, and controllability. Our TOD-Flow graph learns what a model can, should, and should not predict, effectively reducing the search space and providing a rationale for the model's prediction. We show that the proposed TOD-Flow graph better resembles human-annotated graphs compared to prior approaches. Furthermore, when combined with several dialogue policies and end-to-end dialogue models, we demonstrate that our approach significantly improves dialog act classification and end-to-end response generation performance in the MultiWOZ and SGD benchmarks. Code available at: //github.com/srsohn/TOD-Flow
Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.
Collecting supporting evidence from large corpora of text (e.g., Wikipedia) is of great challenge for open-domain Question Answering (QA). Especially, for multi-hop open-domain QA, scattered evidence pieces are required to be gathered together to support the answer extraction. In this paper, we propose a new retrieval target, hop, to collect the hidden reasoning evidence from Wikipedia for complex question answering. Specifically, the hop in this paper is defined as the combination of a hyperlink and the corresponding outbound link document. The hyperlink is encoded as the mention embedding which models the structured knowledge of how the outbound link entity is mentioned in the textual context, and the corresponding outbound link document is encoded as the document embedding representing the unstructured knowledge within it. Accordingly, we build HopRetriever which retrieves hops over Wikipedia to answer complex questions. Experiments on the HotpotQA dataset demonstrate that HopRetriever outperforms previously published evidence retrieval methods by large margins. Moreover, our approach also yields quantifiable interpretations of the evidence collection process.