亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Because a fast vaccination rollout against coronavirus disease 2019 (COVID-19) is critical to restore daily life and avoid virus mutations, it is tempting to have a relaxed vaccination-administration management system. However, a robust management system can support the enforcement of preventive measures, and in turn, reduce incidence and deaths. Here, we model a trustable and reliable management system based on blockchain for vaccine distribution by extending the Susceptible-Exposed-Infected-Recovery (SEIR) model. The model includes prevention measures such as mask-wearing, social distance, vaccination rate, and vaccination efficiency. It also considers negative social behavior, such as violations of social distance and attempts of using illegitimate vaccination proofs. By evaluating the model, we show that the proposed system can reduce up to 2.5 million cases and half a million deaths in the most demanding scenarios.

相關內容

Interactive machine learning (IML) is a field of research that explores how to leverage both human and computational abilities in decision making systems. IML represents a collaboration between multiple complementary human and machine intelligent systems working as a team, each with their own unique abilities and limitations. This teamwork might mean that both systems take actions at the same time, or in sequence. Two major open research questions in the field of IML are: "How should we design systems that can learn to make better decisions over time with human interaction?" and "How should we evaluate the design and deployment of such systems?" A lack of appropriate consideration for the humans involved can lead to problematic system behaviour, and issues of fairness, accountability, and transparency. Thus, our goal with this work is to present a human-centred guide to designing and evaluating IML systems while mitigating risks. This guide is intended to be used by machine learning practitioners who are responsible for the health, safety, and well-being of interacting humans. An obligation of responsibility for public interaction means acting with integrity, honesty, fairness, and abiding by applicable legal statutes. With these values and principles in mind, we as a machine learning research community can better achieve goals of augmenting human skills and abilities. This practical guide therefore aims to support many of the responsible decisions necessary throughout the iterative design, development, and dissemination of IML systems.

The advancements in peer-to-peer wireless power transfer (P2P-WPT) have empowered the portable and mobile devices to wirelessly replenish their battery by directly interacting with other nearby devices. The existing works unrealistically assume the users to exchange energy with any of the users and at every such opportunity. However, due to the users' mobility, the inter-node meetings in such opportunistic mobile networks vary, and P2P energy exchange in such scenarios remains uncertain. Additionally, the social interests and interactions of the users influence their mobility as well as the energy exchange between them. The existing P2P-WPT methods did not consider the joint problem for energy exchange due to user's inevitable mobility, and the influence of sociality on the latter. As a result of computing with imprecise information, the energy balance achieved by these works at a slower rate as well as impaired by energy loss for the crowd. Motivated by this problem scenario, in this work, we present a wireless crowd charging method, namely MoSaBa, which leverages mobility prediction and social information for improved energy balancing. MoSaBa incorporates two dimensions of social information, namely social context and social relationships, as additional features for predicting contact opportunities. In this method, we explore the different pairs of peers such that the energy balancing is achieved at a faster rate as well as the energy balance quality improves in terms of maintaining low energy loss for the crowd. We justify the peer selection method in MoSaBa by detailed performance evaluation. Compared to the existing state-of-the-art, the proposed method achieves better performance trade-offs between energy-efficiency, energy balance quality and convergence time.

Many studies have demonstrated that mobile applications are common means to collect massive amounts of personal data. This goes unnoticed by most users, who are also unaware that many different organizations are receiving this data, even from multiple apps in parallel. This paper assesses different techniques to identify the organizations that are receiving personal data flows in the Android ecosystem, namely the WHOIS service, SSL certificates inspection, and privacy policy textual analysis. Based on our findings, we propose a fully automated method that combines the most successful techniques, achieving a 94.73% precision score in identifying the recipient organization. We further demonstrate our method by evaluating 1,000 Android apps and exposing the corporations that collect the users' personal data.

The fundamental tradeoff between transaction per second (TPS) and security in blockchain systems persists despite numerous prior attempts to boost TPS. To increase TPS without compromising security, we propose a bodyless block propagation (BBP) scheme for which the block body is not validated and transmitted during the block propagation process. Rather, the nodes in the blockchain network anticipate the transactions and their ordering in the next upcoming block so that these transactions can be pre-executed and pre-validated before the birth of the block. It is critical, however, all nodes have a consensus on the transaction content of the next block. This paper puts forth a transaction selection, ordering, and synchronization algorithm to drive the nodes to reach such a consensus. Yet, the coinbase address of the miner of the next block cannot be anticipated, and therefore transactions that depend on the coinbase address cannot be pre-executed and pre-validated. This paper further puts forth an algorithm to deal with such unresolvable transactions for an overall consistent and TPS-efficient scheme. With our scheme, most transactions do not need to be validated and transmitted during block propagation, ridding the dependence of propagation time on the number of transactions in the block, and making the system fully TPS scalable. Experimental results show that our protocol can reduce propagation time by 4x with respect to the current Ethereum blockchain, and its TPS performance is limited by the node hardware performance rather than block propagation.

The Coronavirus disease 2019 (COVID-19) outbreak quickly spread around the world, resulting in over 240 million infections and 4 million deaths by Oct 2021. While the virus is spreading from person to person silently, fear has also been spreading around the globe. The COVID-19 information from the Australian Government is convincing but not timely or detailed, and there is much information on social networks with both facts and rumors. As software engineers, we have spontaneously and rapidly constructed a COVID-19 information dashboard aggregating reliable information semi-automatically checked from different sources for providing one-stop information sharing site about the latest status in Australia. Inspired by the John Hopkins University COVID-19 Map, our dashboard contains the case statistics, case distribution, government policy, latest news, with interactive visualization. In this paper, we present a participant's in-person observations in which the authors acted as founders of //covid-19-au.com/ serving more than 830K users with 14M page views since March 2020. According to our first-hand experience, we summarize 9 lessons for developers, researchers and instructors. These lessons may inspire the development, research and teaching in software engineer aspects for coping with similar public crises in the future.

Developing technology and changing lifestyles have made online grocery delivery applications an indispensable part of urban life. Since the beginning of the COVID-19 pandemic, the demand for such applications has dramatically increased, creating new competitors that disrupt the market. An increasing level of competition might prompt companies to frequently restructure their marketing and product pricing strategies. Therefore, identifying the change patterns in product prices and sales volumes would provide a competitive advantage for the companies in the marketplace. In this paper, we investigate alternative clustering methodologies to group the products based on the price patterns and sales volumes. We propose a novel distance metric that takes into account how product prices and sales move together rather than calculating the distance using numerical values. We compare our approach with traditional clustering algorithms, which typically rely on generic distance metrics such as Euclidean distance, and image clustering approaches that aim to group data by capturing its visual patterns. We evaluate the performances of different clustering algorithms using our custom evaluation metric as well as Calinski Harabasz and Davies Bouldin indices, which are commonly used internal validity metrics. We conduct our numerical study using a propriety price dataset from an online food and grocery delivery company, and the publicly available Favorita sales dataset. We find that our proposed clustering approach and image clustering both perform well for finding the products with similar price and sales patterns within large datasets.

Medical data is often highly sensitive in terms of data privacy and security concerns. Federated learning, one type of machine learning techniques, has been started to use for the improvement of the privacy and security of medical data. In the federated learning, the training data is distributed across multiple machines, and the learning process is performed in a collaborative manner. There are several privacy attacks on deep learning (DL) models to get the sensitive information by attackers. Therefore, the DL model itself should be protected from the adversarial attack, especially for applications using medical data. One of the solutions for this problem is homomorphic encryption-based model protection from the adversary collaborator. This paper proposes a privacy-preserving federated learning algorithm for medical data using homomorphic encryption. The proposed algorithm uses a secure multi-party computation protocol to protect the deep learning model from the adversaries. In this study, the proposed algorithm using a real-world medical dataset is evaluated in terms of the model performance.

The outbreak of the COVID-19 pandemic has deeply influenced the lifestyle of the general public and the healthcare system of the society. As a promising approach to address the emerging challenges caused by the epidemic of infectious diseases like COVID-19, Internet of Medical Things (IoMT) deployed in hospitals, clinics, and healthcare centers can save the diagnosis time and improve the efficiency of medical resources though privacy and security concerns of IoMT stall the wide adoption. In order to tackle the privacy, security, and interoperability issues of IoMT, we propose a framework of blockchain-enabled IoMT by introducing blockchain to incumbent IoMT systems. In this paper, we review the benefits of this architecture and illustrate the opportunities brought by blockchain-enabled IoMT. We also provide use cases of blockchain-enabled IoMT on fighting against the COVID-19 pandemic, including the prevention of infectious diseases, location sharing and contact tracing, and the supply chain of injectable medicines. We also outline future work in this area.

Refractive freeform components are becoming increasingly relevant for generating controlled patterns of light, because of their capability to spatially-modulate optical signals with high efficiency and low background. However, the use of these devices is still limited by difficulties in manufacturing macroscopic elements with complex, 3-dimensional (3D) surface reliefs. Here, 3D-printed and stretchable magic windows generating light patterns by refraction are introduced. The shape and, consequently, the light texture achieved can be changed through controlled device strain. Cryptographic magic windows are demonstrated through exemplary light patterns, including micro-QR-codes, that are correctly projected and recognized upon strain gating while remaining cryptic for as-produced devices. The light pattern of micro-QR-codes can also be projected by two coupled magic windows, with one of them acting as the decryption key. Such novel, freeform elements with 3D shape and tailored functionalities is relevant for applications in illumination design, smart labels, anti-counterfeiting systems, and cryptographic communication.

Reinforcement learning (RL) has shown great success in solving many challenging tasks via use of deep neural networks. Although using deep learning for RL brings immense representational power, it also causes a well-known sample-inefficiency problem. This means that the algorithms are data-hungry and require millions of training samples to converge to an adequate policy. One way to combat this issue is to use action advising in a teacher-student framework, where a knowledgeable teacher provides action advice to help the student. This work considers how to better leverage uncertainties about when a student should ask for advice and if the student can model the teacher to ask for less advice. The student could decide to ask for advice when it is uncertain or when both it and its model of the teacher are uncertain. In addition to this investigation, this paper introduces a new method to compute uncertainty for a deep RL agent using a secondary neural network. Our empirical results show that using dual uncertainties to drive advice collection and reuse may improve learning performance across several Atari games.

北京阿比特科技有限公司