Random walk based node embedding algorithms learn vector representations of nodes by optimizing an objective function of node embedding vectors and skip-bigram statistics computed from random walks on the network. They have been applied to many supervised learning problems such as link prediction and node classification and have demonstrated state-of-the-art performance. Yet, their properties remain poorly understood. This paper studies properties of random walk based node embeddings in the unsupervised setting of discovering hidden block structure in the network, i.e., learning node representations whose cluster structure in Euclidean space reflects their adjacency structure within the network. We characterize the ergodic limits of the embedding objective, its generalization, and related convex relaxations to derive corresponding non-randomized versions of the node embedding objectives. We also characterize the optimal node embedding Grammians of the non-randomized objectives for the expected graph of a two-community Stochastic Block Model (SBM). We prove that the solution Grammian has rank $1$ for a suitable nuclear norm relaxation of the non-randomized objective. Comprehensive experimental results on SBM random networks reveal that our non-randomized ergodic objectives yield node embeddings whose distribution is Gaussian-like, centered at the node embeddings of the expected network within each community, and concentrate in the linear degree-scaling regime as the number of nodes increases.
We consider the following dynamic problem: given a fixed (small) template graph with colored vertices C and a large graph with colored vertices G (whose colors can be changed dynamically), how many mappings m are there from the vertices of C to vertices of G in such a way that the colors agree, and the distances between m(v) and m(w) have given values for every edge? We show that this problem can be solved efficiently on triangulations of the hyperbolic plane, as well as other Gromov hyperbolic graphs. For various template graphs C, this result lets us efficiently solve various computational problems which are relevant in applications, such as visualization of hierarchical data and social network analysis.
The rate of convergence of weighted kernel herding (WKH) and sequential Bayesian quadrature (SBQ), two kernel-based sampling algorithms for estimating integrals with respect to some target probability measure, is investigated. Under verifiable conditions on the chosen kernel and target measure, we establish a near-geometric rate of convergence for target measures that are nearly atomic. Furthermore, we show these algorithms perform comparably to the theoretical best possible sampling algorithm under the maximum mean discrepancy. An analysis is also conducted in a distributed setting. Our theoretical developments are supported by empirical observations on simulated data as well as a real world application.
It was observed in [1] that the expectation of a squared scalar product of two random independent unit vectors that are uniformly distributed on the unit sphere in $R^n $ is equal to $1/n$. It is shown in this paper, that this is a characteristic property of random vectors defined on invariant probability subspaces of unit spheres in irreducible real representations of compact Lie groups.
Model Checking is widely applied in verifying complicated and especially concurrent systems. Despite of its popularity, model checking suffers from the state space explosion problem that restricts it from being applied to certain systems, or specifications. Many works have been proposed in the past to address the state space explosion problem, and they have achieved some success, but the inherent complexity still remains an obstacle for purely symbolic approaches. In this paper, we propose a Graph Neural Network (GNN) based approach for model checking, where the model is expressed using a B{\"u}chi automaton and the property to be verified is expressed using Linear Temporal Logic (LTL). We express the model as a GNN, and propose a novel node embedding framework that encodes the LTL property and characteristics of the model. We reduce the LTL model checking problem to a graph classification problem, where there are two classes, 1 (if the model satisfies the specification) and 0 (if the model does not satisfy the specification). The experimental results show that our framework is up to 17 times faster than state-of-the-art tools. Our approach is particularly useful when dealing with very large LTL formulae and small to moderate sized models.
The class imbalance problem, as an important issue in learning node representations, has drawn increasing attention from the community. Although the imbalance considered by existing studies roots from the unequal quantity of labeled examples in different classes (quantity imbalance), we argue that graph data expose a unique source of imbalance from the asymmetric topological properties of the labeled nodes, i.e., labeled nodes are not equal in terms of their structural role in the graph (topology imbalance). In this work, we first probe the previously unknown topology-imbalance issue, including its characteristics, causes, and threats to semi-supervised node classification learning. We then provide a unified view to jointly analyzing the quantity- and topology- imbalance issues by considering the node influence shift phenomenon with the Label Propagation algorithm. In light of our analysis, we devise an influence conflict detection -- based metric Totoro to measure the degree of graph topology imbalance and propose a model-agnostic method ReNode to address the topology-imbalance issue by re-weighting the influence of labeled nodes adaptively based on their relative positions to class boundaries. Systematic experiments demonstrate the effectiveness and generalizability of our method in relieving topology-imbalance issue and promoting semi-supervised node classification. The further analysis unveils varied sensitivity of different graph neural networks (GNNs) to topology imbalance, which may serve as a new perspective in evaluating GNN architectures.
Learning embeddings of entities and relations existing in knowledge bases allows the discovery of hidden patterns in data. In this work, we examine the geometrical space's contribution to the task of knowledge base completion. We focus on the family of translational models, whose performance has been lagging, and propose a model, dubbed HyperKG, which exploits the hyperbolic space in order to better reflect the topological properties of knowledge bases. We investigate the type of regularities that our model can capture and we show that it is a prominent candidate for effectively representing a subset of Datalog rules. We empirically show, using a variety of link prediction datasets, that hyperbolic space allows to narrow down significantly the performance gap between translational and bilinear models.
Network embedding aims to learn a latent, low-dimensional vector representations of network nodes, effective in supporting various network analytic tasks. While prior arts on network embedding focus primarily on preserving network topology structure to learn node representations, recently proposed attributed network embedding algorithms attempt to integrate rich node content information with network topological structure for enhancing the quality of network embedding. In reality, networks often have sparse content, incomplete node attributes, as well as the discrepancy between node attribute feature space and network structure space, which severely deteriorates the performance of existing methods. In this paper, we propose a unified framework for attributed network embedding-attri2vec-that learns node embeddings by discovering a latent node attribute subspace via a network structure guided transformation performed on the original attribute space. The resultant latent subspace can respect network structure in a more consistent way towards learning high-quality node representations. We formulate an optimization problem which is solved by an efficient stochastic gradient descent algorithm, with linear time complexity to the number of nodes. We investigate a series of linear and non-linear transformations performed on node attributes and empirically validate their effectiveness on various types of networks. Another advantage of attri2vec is its ability to solve out-of-sample problems, where embeddings of new coming nodes can be inferred from their node attributes through the learned mapping function. Experiments on various types of networks confirm that attri2vec is superior to state-of-the-art baselines for node classification, node clustering, as well as out-of-sample link prediction tasks. The source code of this paper is available at //github.com/daokunzhang/attri2vec.
Network embedding methodologies, which learn a distributed vector representation for each vertex in a network, have attracted considerable interest in recent years. Existing works have demonstrated that vertex representation learned through an embedding method provides superior performance in many real-world applications, such as node classification, link prediction, and community detection. However, most of the existing methods for network embedding only utilize topological information of a vertex, ignoring a rich set of nodal attributes (such as, user profiles of an online social network, or textual contents of a citation network), which is abundant in all real-life networks. A joint network embedding that takes into account both attributional and relational information entails a complete network information and could further enrich the learned vector representations. In this work, we present Neural-Brane, a novel Neural Bayesian Personalized Ranking based Attributed Network Embedding. For a given network, Neural-Brane extracts latent feature representation of its vertices using a designed neural network model that unifies network topological information and nodal attributes; Besides, it utilizes Bayesian personalized ranking objective, which exploits the proximity ordering between a similar node-pair and a dissimilar node-pair. We evaluate the quality of vertex embedding produced by Neural-Brane by solving the node classification and clustering tasks on four real-world datasets. Experimental results demonstrate the superiority of our proposed method over the state-of-the-art existing methods.
Recent successes in word embedding and document embedding have motivated researchers to explore similar representations for networks and to use such representations for tasks such as edge prediction, node label prediction, and community detection. Such network embedding methods are largely focused on finding distributed representations for unsigned networks and are unable to discover embeddings that respect polarities inherent in edges. We propose SIGNet, a fast scalable embedding method suitable for signed networks. Our proposed objective function aims to carefully model the social structure implicit in signed networks by reinforcing the principles of social balance theory. Our method builds upon the traditional word2vec family of embedding approaches and adds a new targeted node sampling strategy to maintain structural balance in higher-order neighborhoods. We demonstrate the superiority of SIGNet over state-of-the-art methods proposed for both signed and unsigned networks on several real world datasets from different domains. In particular, SIGNet offers an approach to generate a richer vocabulary of features of signed networks to support representation and reasoning.
Social network analysis provides meaningful information about behavior of network members that can be used for diverse applications such as classification, link prediction. However, network analysis is computationally expensive because of feature learning for different applications. In recent years, many researches have focused on feature learning methods in social networks. Network embedding represents the network in a lower dimensional representation space with the same properties which presents a compressed representation of the network. In this paper, we introduce a novel algorithm named "CARE" for network embedding that can be used for different types of networks including weighted, directed and complex. Current methods try to preserve local neighborhood information of nodes, whereas the proposed method utilizes local neighborhood and community information of network nodes to cover both local and global structure of social networks. CARE builds customized paths, which are consisted of local and global structure of network nodes, as a basis for network embedding and uses the Skip-gram model to learn representation vector of nodes. Subsequently, stochastic gradient descent is applied to optimize our objective function and learn the final representation of nodes. Our method can be scalable when new nodes are appended to network without information loss. Parallelize generation of customized random walks is also used for speeding up CARE. We evaluate the performance of CARE on multi label classification and link prediction tasks. Experimental results on various networks indicate that the proposed method outperforms others in both Micro and Macro-f1 measures for different size of training data.