亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Nakamoto consensus (NC) powers major proof-of-work (PoW) and proof-of-stake (PoS) blockchains such as Bitcoin or Cardano. Given a network of nodes with certain communication and computation capacities, against what fraction of adversarial power (the resilience) is Nakamoto consensus secure for a given block production rate? Prior security analyses of NC used a bounded delay model which does not capture network congestion resulting from high block production rates, bursty release of adversarial blocks, and in PoS, spamming due to equivocations. For PoW, we find a new attack, called teasing attack, that exploits congestion to increase the time taken to download and verify blocks, thereby succeeding at lower adversarial power than the private attack which was deemed to be the worst-case attack in prior analysis. By adopting a bounded bandwidth model to capture congestion, and through an improved analysis method, we identify the resilience of PoW NC for a given block production rate. In PoS, we augment our attack with equivocations to further increase congestion, making the vanilla PoS NC protocol insecure against any adversarial power except at very low block production rates. To counter equivocation spamming in PoS, we present a new NC-style protocol Sanitizing PoS (SaPoS) which achieves the same resilience as PoW NC.

相關內容

Deep neural networks tend to make overconfident predictions and often require additional detectors for misclassifications, particularly for safety-critical applications. Existing detection methods usually only focus on adversarial attacks or out-of-distribution samples as reasons for false predictions. However, generalization errors occur due to diverse reasons often related to poorly learning relevant invariances. We therefore propose GIT, a holistic approach for the detection of generalization errors that combines the usage of gradient information and invariance transformations. The invariance transformations are designed to shift misclassified samples back into the generalization area of the neural network, while the gradient information measures the contradiction between the initial prediction and the corresponding inherent computations of the neural network using the transformed sample. Our experiments demonstrate the superior performance of GIT compared to the state-of-the-art on a variety of network architectures, problem setups and perturbation types.

The Chinese Remainder Theorem for the integers says that every system of congruence equations is solvable as long as the system satisfies an obvious necessary condition. This statement can be generalized in a natural way to arbitrary algebraic structures using the language of Universal Algebra. In this context, an algebra is a structure of a first-order language with no relation symbols, and a congruence on an algebra is an equivalence relation on its base set compatible with its fundamental operations. A tuple of congruences of an algebra is called a Chinese Remainder tuple if every system involving them is solvable. In this article we study the complexity of deciding whether a tuple of congruences of a finite algebra is a Chinese Remainder tuple. This problem, which we denote CRT, is easily seen to lie in coNP. We prove that it is actually coNP-complete and also show that it is tractable when restricted to several well-known classes of algebras, such as vector spaces and distributive lattices. The polynomial algorithms we exhibit are made possible by purely algebraic characterizations of Chinese Remainder tuples for algebras in these classes, which constitute interesting results in their own right. Among these, an elegant characterization of Chinese Remainder tuples of finite distributive lattices stands out. Finally, we address the restriction of CRT to an arbitrary equational class $\mathcal{V}$ generated by a two-element algebra. Here we establish an (almost) dichotomy by showing that, unless $\mathcal{V}$ is the class of semilattices, the problem is either coNP-complete or tractable.

The various benefits of multi-tenanting, such as higher device utilization and increased profit margin, intrigue the cloud field-programmable gate array (FPGA) servers to include multi-tenanting in their infrastructure. However, this property makes these servers vulnerable to power side-channel (PSC) attacks. Logic designs such as ring oscillator (RO) and time-to-digital converter (TDC) are used to measure the power consumed by security critical circuits, such as advanced encryption standard (AES). Firstly, the existing works require higher minimum traces for disclosure (MTD). Hence, in this work, we improve the sensitivity of the TDC-based sensors by manually placing the FPGA primitives inferring these sensors. This enhancement helps to determine the 128-bit AES key using 3.8K traces. Secondly, the existing defenses use ROs to defend against PSC attacks. However, cloud servers such as Amazon Web Services (AWS) block design with combinatorial loops. Hence, we propose a placement-based defense. We study the impact of (i) primitive-level placement on the AES design and (ii) additional logic that resides along with the AES on the correlation power analysis (CPA) attack results. Our results showcase that the AES along with filters and/or processors are sufficient to provide the same level or better security than the existing defenses.

Despite their simple intuition, convolutions are more tedious to analyze than dense layers, which complicates the generalization of theoretical and algorithmic ideas. We provide a new perspective onto convolutions through tensor networks (TNs) which allow reasoning about the underlying tensor multiplications by drawing diagrams, and manipulating them to perform function transformations, sub-tensor access, and fusion. We demonstrate this expressive power by deriving the diagrams of various autodiff operations and popular approximations of second-order information with full hyper-parameter support, batching, channel groups, and generalization to arbitrary convolution dimensions. Further, we provide convolution-specific transformations based on the connectivity pattern which allow to re-wire and simplify diagrams before evaluation. Finally, we probe computational performance, relying on established machinery for efficient TN contraction. Our TN implementation speeds up a recently-proposed KFAC variant up to 4.5x and enables new hardware-efficient tensor dropout for approximate backpropagation.

We performed a billion locality sensitive hash comparisons between artificially generated data samples to answer the critical question - can we verify the "correctness" of generative AI output in a non-deterministic, trustless, decentralized network? We generate millions of data samples from a variety of open source diffusion and large language models and describe the procedures and trade-offs between generating more verses less deterministic output in a heterogenous, stochastic network. Further, we analyze the outputs to provide empirical evidence of different parameterizations of tolerance and error bounds for verification. Finally, given that we have the generated an enormous amount of simulated data, we also release a new training dataset called ImageNet-Gen for use in augmenting existing training pipelines. For our results, we show that with a majority vote between three independent verifiers, we can detect image generated perceptual collisions in generated AI with over 99.89% probability and less than 0.0267% chance of intra-class collision. For large language models (LLMs), we are able to gain 100% consensus using greedy methods or n-way beam searches to generate consensus demonstrated on different LLMs. In the context of generative AI training, we pinpoint and minimize the major sources of stochasticity and present gossip and synchronization training techniques for verifiability. Thus, this work provides a practical, solid foundation for AI verification and consensus for the minimization of trust in a decentralized network.

Graph Neural Networks (GNNs) have gained growing interest in miscellaneous applications owing to their outstanding ability in extracting latent representation on graph structures. To render GNN-based service for IoT-driven smart applications, traditional model serving paradigms usually resort to the cloud by fully uploading geo-distributed input data to remote datacenters. However, our empirical measurements reveal the significant communication overhead of such cloud-based serving and highlight the profound potential in applying the emerging fog computing. To maximize the architectural benefits brought by fog computing, in this paper, we present Fograph, a novel distributed real-time GNN inference framework that leverages diverse and dynamic resources of multiple fog nodes in proximity to IoT data sources. By introducing heterogeneity-aware execution planning and GNN-specific compression techniques, Fograph tailors its design to well accommodate the unique characteristics of GNN serving in fog environments. Prototype-based evaluation and case study demonstrate that Fograph significantly outperforms the state-of-the-art cloud serving and fog deployment by up to 5.39x execution speedup and 6.84x throughput improvement.

We present an $\ell^2_2+\ell_1$-regularized discrete least squares approximation over general regions under assumptions of hyperinterpolation, named hybrid hyperinterpolation. Hybrid hyperinterpolation, using a soft thresholding operator and a filter function to shrink the Fourier coefficients approximated by a high-order quadrature rule of a given continuous function with respect to some orthonormal basis, is a combination of Lasso and filtered hyperinterpolations. Hybrid hyperinterpolation inherits features of them to deal with noisy data once the regularization parameter and the filter function are chosen well. We not only provide $L_2$ errors in theoretical analysis for hybrid hyperinterpolation to approximate continuous functions with noise and noise-free, but also decompose $L_2$ errors into three exact computed terms with the aid of a prior regularization parameter choices rule. This rule, making fully use of coefficients of hyperinterpolation to choose a regularization parameter, reveals that $L_2$ errors for hybrid hyperinterpolation sharply decrease and then slowly increase when the sparsity of coefficients ranges from one to large values. Numerical examples show the enhanced performance of hybrid hyperinterpolation when regularization parameters and noise vary. Theoretical $L_2$ errors bounds are verified in numerical examples on the interval, the unit-disk, the unit-sphere and the unit-cube, the union of disks.

The container relocation problem is a combinatorial optimisation problem aimed at finding a sequence of container relocations to retrieve all containers in a predetermined order by minimising a given objective. Relocation rules (RRs), which consist of a priority function and relocation scheme, are heuristics commonly used for solving the mentioned problem due to their flexibility and efficiency. Recently, in many real-world problems it is becoming increasingly important to consider energy consumption. However, for this variant no RRs exist and would need to be designed manually. One possibility to circumvent this issue is by applying hyperheuristics to automatically design new RRs. In this study we use genetic programming to obtain priority functions used in RRs whose goal is to minimise energy consumption. We compare the proposed approach with a genetic algorithm from the literature used to design the priority function. The results obtained demonstrate that the RRs designed by genetic programming achieve the best performance.

Since the cyberspace consolidated as fifth warfare dimension, the different actors of the defense sector began an arms race toward achieving cyber superiority, on which research, academic and industrial stakeholders contribute from a dual vision, mostly linked to a large and heterogeneous heritage of developments and adoption of civilian cybersecurity capabilities. In this context, augmenting the conscious of the context and warfare environment, risks and impacts of cyber threats on kinetic actuations became a critical rule-changer that military decision-makers are considering. A major challenge on acquiring mission-centric Cyber Situational Awareness (CSA) is the dynamic inference and assessment of the vertical propagations from situations that occurred at the mission supportive Information and Communications Technologies (ICT), up to their relevance at military tactical, operational and strategical views. In order to contribute on acquiring CSA, this paper addresses a major gap in the cyber defence state-of-the-art: the dynamic identification of Key Cyber Terrains (KCT) on a mission-centric context. Accordingly, the proposed KCT identification approach explores the dependency degrees among tasks and assets defined by commanders as part of the assessment criteria. These are correlated with the discoveries on the operational network and the asset vulnerabilities identified thorough the supported mission development. The proposal is presented as a reference model that reveals key aspects for mission-centric KCT analysis and supports its enforcement and further enforcement by including an illustrative application case.

Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.

北京阿比特科技有限公司