亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Hyperspectral image (HSI) clustering is gaining considerable attention owing to recent methods that overcome the inefficiency and misleading results from the absence of supervised information. Contrastive learning methods excel at existing pixel level and super pixel level HSI clustering tasks. The pixel-level contrastive learning method can effectively improve the ability of the model to capture fine features of HSI but requires a large time overhead. The super pixel-level contrastive learning method utilizes the homogeneity of HSI and reduces computing resources; however, it yields rough classification results. To exploit the strengths of both methods, we present a pixel super pixel contrastive learning and pseudo-label correction (PSCPC) method for the HSI clustering. PSCPC can reasonably capture domain-specific and fine-grained features through super pixels and the comparative learning of a small number of pixels within the super pixels. To improve the clustering performance of super pixels, this paper proposes a pseudo-label correction module that aligns the clustering pseudo-labels of pixels and super-pixels. In addition, pixel-level clustering results are used to supervise super pixel-level clustering, improving the generalization ability of the model. Extensive experiments demonstrate the effectiveness and efficiency of PSCPC.

相關內容

Printed Electronics (PE) feature distinct and remarkable characteristics that make them a prominent technology for achieving true ubiquitous computing. This is particularly relevant in application domains that require conformal and ultra-low cost solutions, which have experienced limited penetration of computing until now. Unlike silicon-based technologies, PE offer unparalleled features such as non-recurring engineering costs, ultra-low manufacturing cost, and on-demand fabrication of conformal, flexible, non-toxic, and stretchable hardware. However, PE face certain limitations due to their large feature sizes, that impede the realization of complex circuits, such as machine learning classifiers. In this work, we address these limitations by leveraging the principles of Approximate Computing and Bespoke (fully-customized) design. We propose an automated framework for designing ultra-low power Multilayer Perceptron (MLP) classifiers which employs, for the first time, a holistic approach to approximate all functions of the MLP's neurons: multiplication, accumulation, and activation. Through comprehensive evaluation across various MLPs of varying size, our framework demonstrates the ability to enable battery-powered operation of even the most intricate MLP architecture examined, significantly surpassing the current state of the art.

Self-supervised learning (SSL) has been incorporated into many state-of-the-art models in various domains, where SSL defines pretext tasks based on unlabeled datasets to learn contextualized and robust representations. Recently, SSL has been a new trend in exploring the representation learning capability in the realm of tabular data, which is more challenging due to not having explicit relations for learning descriptive representations. This survey aims to systematically review and summarize the recent progress and challenges of SSL for non-sequential tabular data (SSL4NS-TD). We first present a formal definition of NS-TD and clarify its correlation to related studies. Then, these approaches are categorized into three groups -- predictive learning, contrastive learning, and hybrid learning, with their motivations and strengths of representative methods within each direction. On top of this, application issues of SSL4NS-TD are presented, including automatic data engineering, cross-table transferability, and domain knowledge integration. In addition, we elaborate on existing benchmarks and datasets for NS-TD applications to discuss the performance of existing tabular models. Finally, we discuss the challenges of SSL4NS-TD and provide potential directions for future research. We expect our work to be useful in terms of encouraging more research on lowering the barrier to entry SSL for the tabular domain and improving the foundations for implicit tabular data.

Influence Maximization (IM) is a crucial problem in data science. The goal is to find a fixed-size set of highly-influential seed vertices on a network to maximize the influence spread along the edges. While IM is NP-hard on commonly-used diffusion models, a greedy algorithm can achieve $(1-1/e)$-approximation, repeatedly selecting the vertex with the highest marginal gain in influence as the seed. Due to theoretical guarantees, rich literature focuses on improving the performance of the greedy algorithm. To estimate the marginal gain, existing work either runs Monte Carlo (MC) simulations of influence spread or pre-stores hundreds of sketches (usually per-vertex information). However, these approaches can be inefficient in time (MC simulation) or space (storing sketches), preventing the ideas from scaling to today's large-scale graphs. This paper significantly improves the scalability of IM using two key techniques. The first is a sketch-compression technique for the independent cascading model on undirected graphs. It allows combining the simulation and sketching approaches to achieve a time-space tradeoff. The second technique includes new data structures for parallel seed selection. Using our new approaches, we implemented PaC-IM: Parallel and Compressed IM. We compare PaC-IM with state-of-the-art parallel IM systems on a 96-core machine with 1.5TB memory. PaC-IM can process large-scale graphs with up to 900M vertices and 74B edges in about 2 hours. On average across all tested graphs, our uncompressed version is 5--18$\times$ faster and about 1.4$\times$ more space-efficient than existing parallel IM systems. Using compression further saves 3.8$\times$ space with only 70% overhead in time on average.

Denoising diffusion probabilistic models (DDPMs) have recently taken the field of generative modeling by storm, pioneering new state-of-the-art results in disciplines such as computer vision and computational biology for diverse tasks ranging from text-guided image generation to structure-guided protein design. Along this latter line of research, methods have recently been proposed for generating 3D molecules using equivariant graph neural networks (GNNs) within a DDPM framework. However, such methods are unable to learn important geometric and physical properties of 3D molecules during molecular graph generation, as they adopt molecule-agnostic and non-geometric GNNs as their 3D graph denoising networks, which negatively impacts their ability to effectively scale to datasets of large 3D molecules. In this work, we address these gaps by introducing the Geometry-Complete Diffusion Model (GCDM) for 3D molecule generation, which outperforms existing 3D molecular diffusion models by significant margins across conditional and unconditional settings for the QM9 dataset as well as for the larger GEOM-Drugs dataset. Importantly, we demonstrate that the geometry-complete denoising process GCDM learns for 3D molecule generation allows the model to generate realistic and stable large molecules at the scale of GEOM-Drugs, whereas previous methods fail to do so with the features they learn. Additionally, we show that extensions of GCDM can not only effectively design 3D molecules for specific protein pockets but also that GCDM's geometric features can effectively be repurposed to directly optimize the geometry and chemical composition of existing 3D molecules for specific molecular properties, demonstrating new, real-world versatility of molecular diffusion models. Our source code and data are freely available at //github.com/BioinfoMachineLearning/Bio-Diffusion.

Techniques of computer systems that have been successfully deployed for dense regular workloads fall short of achieving their goals of scalability and efficiency when applied to irregular and dynamic applications. This is primarily due to the discontent between the multiple layers of the system design from hardware architecture, execution model, programming model, to data-structure and application code. The paper approaches this issue by addressing all layers of the system design. It presents and argues key design principles needed for scalable and efficient dynamic graph processing, and from which it builds: 1) a fine-grain memory driven architecture that supports asynchronous active messages, 2) a programming and execution model that allows spawning tasks from within the data-parallelism, 3) and a data-structure that parallelizes vertex object across many compute cells and yet provides a single programming abstraction to the data object. Simulated experimental results show performance gain of geomean $2.38 \times$ against an state-of-the-art similar system for graph traversals and yet being able to natively support dynamic graph processing. It uses programming abstractions of actions, introduces new dynamic graph storage scheme, and message delivery mechanisms with continuations that contain post-completion actions. Continuations seamlessly adjusts, prior or running, execution to mutations in the input graph and enable dynamic graph processing.

A better understanding of interactive pedestrian behavior in critical traffic situations is essential for the development of enhanced pedestrian safety systems. Real-world traffic observations play a decisive role in this, since they represent behavior in an unbiased way. In this work, we present an approach of how a subset of very considerable pedestrian-vehicle interactions can be derived from a camera-based observation system. For this purpose, we have examined road user trajectories automatically for establishing temporal and spatial relationships, using 110h hours of video recordings. In order to identify critical interactions, our approach combines the metric post-encroachment time with a newly introduced motion adaption metric. From more than 11,000 reconstructed pedestrian trajectories, 259 potential scenarios remained, using a post-encroachment time threshold of 2s. However, in 95% of cases, no adaptation of the pedestrian behavior was observed due to avoiding criticality. Applying the proposed motion adaption metric, only 21 critical scenarios remained. Manual investigations revealed that critical pedestrian vehicle interactions were present in 7 of those. They were further analyzed and made publicly available for developing pedestrian behavior models3. The results indicate that critical interactions in which the pedestrian perceives and reacts to the vehicle at a relatively late stage can be extracted using the proposed method.

In contrast to close-set scenarios that restore images from a predefined set of degradations, open-set image restoration aims to handle the unknown degradations that were unforeseen during the pretraining phase, which is less-touched as far as we know. In this work, we explicitly study this challenging problem and reveal its essence, i.e., the unidentified distribution shifts between test and training data. In recent, test-time adaptation emerges as a fundamental method to address this inherent disparities. Inspired by this, we propose a test-time degradation adaption framework for open-set image restoration, which involves three components, i.e., i) a pre-trained and degradation-agnostic diffusion model to generate clean images, ii) a test-time degradation adapter adapts the unknown degradations based on the input image during the testing phase, and iii) the adapter-guided image restoration guides the model through the adapter to produce the corresponding clean image. Through experiments on multiple degradations absent from the training data, we show that our method achieves comparable even better performance than those task-specific methods.

Semantic communication is focused on optimizing the exchange of information by transmitting only the most relevant data required to convey the intended message to the receiver and achieve the desired communication goal. For example, if we consider images as the information and the goal of the communication is object detection at the receiver side, the semantic of information would be the objects in each image. Therefore, by only transferring the semantics of images we can achieve the communication goal. In this paper, we propose a design framework for implementing semantic-aware and goal-oriented communication of images. To achieve this, we first define the baseline problem as a set of mathematical problems that can be optimized to improve the efficiency and effectiveness of the communication system. We consider two scenarios in which either the data rate or the error at the receiver is the limiting constraint. Our proposed system model and solution is inspired by the concept of auto-encoders, where the encoder and the decoder are respectively implemented at the transmitter and receiver to extract semantic information for specific object detection goals. Our numerical results validate the proposed design framework to achieve low error or near-optimal in a goal-oriented communication system while reducing the amount of data transfers.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Top-down visual attention mechanisms have been used extensively in image captioning and visual question answering (VQA) to enable deeper image understanding through fine-grained analysis and even multiple steps of reasoning. In this work, we propose a combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions. This is the natural basis for attention to be considered. Within our approach, the bottom-up mechanism (based on Faster R-CNN) proposes image regions, each with an associated feature vector, while the top-down mechanism determines feature weightings. Applying this approach to image captioning, our results on the MSCOCO test server establish a new state-of-the-art for the task, achieving CIDEr / SPICE / BLEU-4 scores of 117.9, 21.5 and 36.9, respectively. Demonstrating the broad applicability of the method, applying the same approach to VQA we obtain first place in the 2017 VQA Challenge.

北京阿比特科技有限公司