In recent years, methods for Bayesian inference have been widely used in many different problems in physics where detection and characterization are necessary. Data analysis in gravitational-wave astronomy is a prime example of such a case. Bayesian inference has been very successful because this technique provides a representation of the parameters as a posterior probability distribution, with uncertainties informed by the precision of the experimental measurements. During the last couple of decades, many specific advances have been proposed and employed in order to solve a large variety of different problems. In this work, we present a Markov Chain Monte Carlo (MCMC) algorithm that integrates many of those concepts into a single MCMC package. For this purpose, we have built {\tt Eryn}, a user-friendly and multipurpose toolbox for Bayesian inference, which can be utilized for solving parameter estimation and model selection problems, ranging from simple inference questions, to those with large-scale model variation requiring trans-dimensional MCMC methods, like the LISA global fit problem. In this paper, we describe this sampler package and illustrate its capabilities on a variety of use cases.
In recent years, large language models (LLMs) have spurred a new research paradigm in natural language processing. Despite their excellent capability in knowledge-based question answering and reasoning, their potential to retain faulty or even harmful knowledge poses risks of malicious application. The challenge of mitigating this issue and transforming these models into purer assistants is crucial for their widespread applicability. Unfortunately, Retraining LLMs repeatedly to eliminate undesirable knowledge is impractical due to their immense parameters. Knowledge unlearning, derived from analogous studies on machine unlearning, presents a promising avenue to address this concern and is notably advantageous in the context of LLMs. It allows for the removal of harmful knowledge in an efficient manner, without affecting unrelated knowledge in the model. To this end, we provide a survey of knowledge unlearning in the era of LLMs. Firstly, we formally define the knowledge unlearning problem and distinguish it from related works. Subsequently, we categorize existing knowledge unlearning methods into three classes: those based on parameter optimization, parameter merging, and in-context learning, and introduce details of these unlearning methods. We further present evaluation datasets used in existing methods, and finally conclude this survey by presenting the ongoing challenges and future directions.
We construct an efficient class of increasingly high-order (up to 17th-order) essentially non-oscillatory schemes with multi-resolution (ENO-MR) for solving hyperbolic conservation laws. The candidate stencils for constructing ENO-MR schemes range from first-order one-point stencil increasingly up to the designed very high-order stencil. The proposed ENO-MR schemes adopt a very simple and efficient strategy that only requires the computation of the highest-order derivatives of a part of candidate stencils. Besides simplicity and high efficiency, ENO-MR schemes are completely parameter-free and essentially scale-invariant. Theoretical analysis and numerical computations show that ENO-MR schemes achieve designed high-order convergence in smooth regions which may contain high-order critical points (local extrema) and retain ENO property for strong shocks. In addition, ENO-MR schemes could capture complex flow structures very well.
We study the long time behavior of an underdamped mean-field Langevin (MFL) equation, and provide a general convergence as well as an exponential convergence rate result under different conditions. The results on the MFL equation can be applied to study the convergence of the Hamiltonian gradient descent algorithm for the overparametrized optimization. We then provide a numerical example of the algorithm to train a generative adversarial networks (GAN).
ANOVA decomposition of function with random input variables provides ANOVA functionals (AFs), which contain information about the contributions of the input variables on the output variable(s). By embedding AFs into an appropriate reproducing kernel Hilbert space regarding their distributions, we propose an efficient statistical test of independence between the input variables and output variable(s). The resulting test statistic leads to new dependent measures of association between inputs and outputs that allow for i) dealing with any distribution of AFs, including the Cauchy distribution, ii) accounting for the necessary or desirable moments of AFs and the interactions among the input variables. In uncertainty quantification for mathematical models, a number of existing measures are special cases of this framework. We then provide unified and general global sensitivity indices and their consistent estimators, including asymptotic distributions. For Gaussian-distributed AFs, we obtain Sobol' indices and dependent generalized sensitivity indices using quadratic kernels.
Motivated by applications in text mining and discrete distribution inference, we investigate the testing for equality of probability mass functions of $K$ groups of high-dimensional multinomial distributions. A test statistic, which is shown to have an asymptotic standard normal distribution under the null, is proposed. The optimal detection boundary is established, and the proposed test is shown to achieve this optimal detection boundary across the entire parameter space of interest. The proposed method is demonstrated in simulation studies and applied to analyze two real-world datasets to examine variation among consumer reviews of Amazon movies and diversity of statistical paper abstracts.
When modeling scientific and industrial problems, geometries are typically modeled by explicit boundary representations obtained from computer-aided design software. Unfitted (also known as embedded or immersed) finite element methods offer a significant advantage in dealing with complex geometries, eliminating the need for generating unstructured body-fitted meshes. However, current unfitted finite elements on nonlinear geometries are restricted to implicit (possibly high-order) level set geometries. In this work, we introduce a novel automatic computational pipeline to approximate solutions of partial differential equations on domains defined by explicit nonlinear boundary representations. For the geometrical discretization, we propose a novel algorithm to generate quadratures for the bulk and surface integration on nonlinear polytopes required to compute all the terms in unfitted finite element methods. The algorithm relies on a nonlinear triangulation of the boundary, a kd-tree refinement of the surface cells that simplify the nonlinear intersections of surface and background cells to simple cases that are diffeomorphically equivalent to linear intersections, robust polynomial root-finding algorithms and surface parameterization techniques. We prove the correctness of the proposed algorithm. We have successfully applied this algorithm to simulate partial differential equations with unfitted finite elements on nonlinear domains described by computer-aided design models, demonstrating the robustness of the geometric algorithm and showing high-order accuracy of the overall method.
This document defines a method for FIR system modelling which is very trivial as it only depends on phase introduction and removal (allpass filters). As magnitude is not altered, the processing is numerically stable. It is limited to phase alteration which maintains the time domain magnitude to force a system within its linear limits.
We construct and analyze finite element approximations of the Einstein tensor in dimension $N \ge 3$. We focus on the setting where a smooth Riemannian metric tensor $g$ on a polyhedral domain $\Omega \subset \mathbb{R}^N$ has been approximated by a piecewise polynomial metric $g_h$ on a simplicial triangulation $\mathcal{T}$ of $\Omega$ having maximum element diameter $h$. We assume that $g_h$ possesses single-valued tangential-tangential components on every codimension-1 simplex in $\mathcal{T}$. Such a metric is not classically differentiable in general, but it turns out that one can still attribute meaning to its Einstein curvature in a distributional sense. We study the convergence of the distributional Einstein curvature of $g_h$ to the Einstein curvature of $g$ under refinement of the triangulation. We show that in the $H^{-2}(\Omega)$-norm, this convergence takes place at a rate of $O(h^{r+1})$ when $g_h$ is an optimal-order interpolant of $g$ that is piecewise polynomial of degree $r \ge 1$. We provide numerical evidence to support this claim.
The number of sampling methods could be daunting for a practitioner looking to cast powerful machine learning methods to their specific problem. This paper takes a theoretical stance to review and organize many sampling approaches in the ``generative modeling'' setting, where one wants to generate new data that are similar to some training examples. By revealing links between existing methods, it might prove useful to overcome some of the current challenges in sampling with diffusion models, such as long inference time due to diffusion simulation, or the lack of diversity in generated samples.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.