Siamese network based trackers formulate 3D single object tracking as cross-correlation learning between point features of a template and a search area. Due to the large appearance variation between the template and search area during tracking, how to learn the robust cross correlation between them for identifying the potential target in the search area is still a challenging problem. In this paper, we explicitly use Transformer to form a 3D Siamese Transformer network for learning robust cross correlation between the template and the search area of point clouds. Specifically, we develop a Siamese point Transformer network to learn shape context information of the target. Its encoder uses self-attention to capture non-local information of point clouds to characterize the shape information of the object, and the decoder utilizes cross-attention to upsample discriminative point features. After that, we develop an iterative coarse-to-fine correlation network to learn the robust cross correlation between the template and the search area. It formulates the cross-feature augmentation to associate the template with the potential target in the search area via cross attention. To further enhance the potential target, it employs the ego-feature augmentation that applies self-attention to the local k-NN graph of the feature space to aggregate target features. Experiments on the KITTI, nuScenes, and Waymo datasets show that our method achieves state-of-the-art performance on the 3D single object tracking task.
The bird's-eye-view (BEV) representation allows robust learning of multiple tasks for autonomous driving including road layout estimation and 3D object detection. However, contemporary methods for unified road layout estimation and 3D object detection rarely handle the class imbalance of the training dataset and multi-class learning to reduce the total number of networks required. To overcome these limitations, we propose a unified model for road layout estimation and 3D object detection inspired by the transformer architecture and the CycleGAN learning framework. The proposed model deals with the performance degradation due to the class imbalance of the dataset utilizing the focal loss and the proposed dual cycle loss. Moreover, we set up extensive learning scenarios to study the effect of multi-class learning for road layout estimation in various situations. To verify the effectiveness of the proposed model and the learning scheme, we conduct a thorough ablation study and a comparative study. The experiment results attest the effectiveness of our model; we achieve state-of-the-art performance in both the road layout estimation and 3D object detection tasks.
With the widespread use of powerful image editing tools, image tampering becomes easy and realistic. Existing image forensic methods still face challenges of low accuracy and robustness. Note that the tampered regions are typically semantic objects, in this letter we propose an effective image tampering localization scheme based on deep semantic segmentation network. ConvNeXt network is used as an encoder to learn better feature representation. The multi-scale features are then fused by Upernet decoder for achieving better locating capability. Combined loss and effective data augmentation are adopted to ensure effective model training. Extensive experimental results confirm that localization performance of our proposed scheme outperforms other state-of-the-art ones.
Temporal action localization aims to predict the boundary and category of each action instance in untrimmed long videos. Most of previous methods based on anchors or proposals neglect the global-local context interaction in entire video sequences. Besides, their multi-stage designs cannot generate action boundaries and categories straightforwardly. To address the above issues, this paper proposes a end-to-end model, called Adaptive Perception transformer (AdaPerFormer for short). Specifically, AdaPerFormer explores a dual-branch attention mechanism. One branch takes care of the global perception attention, which can model entire video sequences and aggregate global relevant contexts. While the other branch concentrates on the local convolutional shift to aggregate intra-frame and inter-frame information through our bidirectional shift operation. The end-to-end nature produces the boundaries and categories of video actions without extra steps. Extensive experiments together with ablation studies are provided to reveal the effectiveness of our design. Our method obtains competitive performance on the THUMOS14 and ActivityNet-1.3 dataset.
We propose Beat Transformer, a novel Transformer encoder architecture for joint beat and downbeat tracking. Different from previous models that track beats solely based on the spectrogram of an audio mixture, our model deals with demixed spectrograms with multiple instrument channels. This is inspired by the fact that humans perceive metrical structures from richer musical contexts, such as chord progression and instrumentation. To this end, we develop a Transformer model with both time-wise attention and instrument-wise attention to capture deep-buried metrical cues. Moreover, our model adopts a novel dilated self-attention mechanism, which achieves powerful hierarchical modelling with only linear complexity. Experiments demonstrate a significant improvement in demixed beat tracking over the non-demixed version. Also, Beat Transformer achieves up to 4% point improvement in downbeat tracking accuracy over the TCN architectures. We further discover an interpretable attention pattern that mirrors our understanding of hierarchical metrical structures.
Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.
Correlation acts as a critical role in the tracking field, especially in recent popular Siamese-based trackers. The correlation operation is a simple fusion manner to consider the similarity between the template and the search region. However, the correlation operation itself is a local linear matching process, leading to lose semantic information and fall into local optimum easily, which may be the bottleneck of designing high-accuracy tracking algorithms. Is there any better feature fusion method than correlation? To address this issue, inspired by Transformer, this work presents a novel attention-based feature fusion network, which effectively combines the template and search region features solely using attention. Specifically, the proposed method includes an ego-context augment module based on self-attention and a cross-feature augment module based on cross-attention. Finally, we present a Transformer tracking (named TransT) method based on the Siamese-like feature extraction backbone, the designed attention-based fusion mechanism, and the classification and regression head. Experiments show that our TransT achieves very promising results on six challenging datasets, especially on large-scale LaSOT, TrackingNet, and GOT-10k benchmarks. Our tracker runs at approximatively 50 fps on GPU. Code and models are available at //github.com/chenxin-dlut/TransT.
This paper proposes a generic method to learn interpretable convolutional filters in a deep convolutional neural network (CNN) for object classification, where each interpretable filter encodes features of a specific object part. Our method does not require additional annotations of object parts or textures for supervision. Instead, we use the same training data as traditional CNNs. Our method automatically assigns each interpretable filter in a high conv-layer with an object part of a certain category during the learning process. Such explicit knowledge representations in conv-layers of CNN help people clarify the logic encoded in the CNN, i.e., answering what patterns the CNN extracts from an input image and uses for prediction. We have tested our method using different benchmark CNNs with various structures to demonstrate the broad applicability of our method. Experiments have shown that our interpretable filters are much more semantically meaningful than traditional filters.
We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.
Person Re-identification (re-id) faces two major challenges: the lack of cross-view paired training data and learning discriminative identity-sensitive and view-invariant features in the presence of large pose variations. In this work, we address both problems by proposing a novel deep person image generation model for synthesizing realistic person images conditional on pose. The model is based on a generative adversarial network (GAN) and used specifically for pose normalization in re-id, thus termed pose-normalization GAN (PN-GAN). With the synthesized images, we can learn a new type of deep re-id feature free of the influence of pose variations. We show that this feature is strong on its own and highly complementary to features learned with the original images. Importantly, we now have a model that generalizes to any new re-id dataset without the need for collecting any training data for model fine-tuning, thus making a deep re-id model truly scalable. Extensive experiments on five benchmarks show that our model outperforms the state-of-the-art models, often significantly. In particular, the features learned on Market-1501 can achieve a Rank-1 accuracy of 68.67% on VIPeR without any model fine-tuning, beating almost all existing models fine-tuned on the dataset.
Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.