亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This brief addresses the design of a Nonlinear Model Predictive Control (NMPC) strategy for exponentially incremental Input-to-State Stable (ISS) systems. In particular, a novel formulation is devised, which does not necessitate the onerous computation of terminal ingredients, but rather relies on the explicit definition of a minimum prediction horizon ensuring closed-loop stability. The designed methodology is particularly suited for the control of systems learned by Recurrent Neural Networks (RNNs), which are known for their enhanced modeling capabilities and for which the incremental ISS properties can be studied thanks to simple algebraic conditions. The approach is applied to Gated Recurrent Unit (GRU) networks, providing also a method for the design of a tailored state observer with convergence guarantees. The resulting control architecture is tested on a benchmark system, demonstrating its good control performances and efficient applicability.

相關內容

作為2006年開始的年度會議系列,ACM ISS(以前稱為ACM ITS,互動桌面和表面國際會議)是研究新的和新興的桌面、數字表面、互動空間和多表面技術的設計、開發和使用的首要場所。官網鏈接: · MoDELS · 生成模型 · state-of-the-art · 樣本 ·
2023 年 12 月 19 日

We present Intrinsic Image Diffusion, a generative model for appearance decomposition of indoor scenes. Given a single input view, we sample multiple possible material explanations represented as albedo, roughness, and metallic maps. Appearance decomposition poses a considerable challenge in computer vision due to the inherent ambiguity between lighting and material properties and the lack of real datasets. To address this issue, we advocate for a probabilistic formulation, where instead of attempting to directly predict the true material properties, we employ a conditional generative model to sample from the solution space. Furthermore, we show that utilizing the strong learned prior of recent diffusion models trained on large-scale real-world images can be adapted to material estimation and highly improves the generalization to real images. Our method produces significantly sharper, more consistent, and more detailed materials, outperforming state-of-the-art methods by $1.5dB$ on PSNR and by $45\%$ better FID score on albedo prediction. We demonstrate the effectiveness of our approach through experiments on both synthetic and real-world datasets.

In this study, we address the central issue of statistical inference for Markov jump processes using discrete time observations. The primary problem at hand is to accurately estimate the infinitesimal generator of a Markov jump process, a critical task in various applications. To tackle this problem, we begin by reviewing established methods for generating sample paths from a Markov jump process conditioned to endpoints, known as Markov bridges. Additionally, we introduce a novel algorithm grounded in the concept of time-reversal, which serves as our main contribution. Our proposed method is then employed to estimate the infinitesimal generator of a Markov jump process. To achieve this, we use a combination of Markov Chain Monte Carlo techniques and the Monte Carlo Expectation-Maximization algorithm. The results obtained from our approach demonstrate its effectiveness in providing accurate parameter estimates. To assess the efficacy of our proposed method, we conduct a comprehensive comparative analysis with existing techniques (Bisection, Uniformization, Direct, Rejection, and Modified Rejection), taking into consideration both speed and accuracy. Notably, our method stands out as the fastest among the alternatives while maintaining high levels of precision.

Introducing a coupling framework reminiscent of FETI methods, but here on abstract form, we establish conditions for stability and minimal requirements for well-posedness on the continuous level, as well as conditions on local solvers for the approximation of subproblems. We then discuss stability of the resulting Lagrange multiplier methods and show stability under a mesh conditions between the local discretizations and the mortar space. If this condition is not satisfied we show how a stabilization, acting only on the multiplier can be used to achieve stability. The design of preconditioners of the Schur complement system is discussed in the unstabilized case. Finally we discuss some applications that enter the framework.

Triggerless Data Acquisition Systems (DAQs) require transmitting the data stream from multiple links to the processing node. The short input data words must be concentrated and packed into the longer bit vectors the output interface (e.g., PCI Express) uses. In that process, the unneeded data must be eliminated, and a dense stream of useful DAQ data must be created. Additionally, the time order of the data should be preserved. This paper presents a new solution using the Baseline Network with Reversed Outputs (BNRO) for high-speed data routing. A thorough analysis of the network's operation enabled increased scalability compared to the previously published concentrator based on an 8x8 network. The solution may be scaled by adding additional layers to the BNRO network while minimizing resource consumption. Simulations were done for 4 and 5 layers (16 and 32 inputs). The FPGA implementation and tests in the actual hardware have been successfully performed for 16 inputs. The pipeline registers may be added in each layer independently, shortening the critical path and increasing the maximum acceptable clock frequency.

This manuscript aims to formalize and conclude the discussions initiated during the PriTEM workshop 22-23 March 2023. We present important ideas and discussion topics in the context of transactive energy systems. Moreover, the conclusions from the discussions articulate potential aspects to be explored in future studies on transactive energy management. Particularly, these conclusions cover research topics in energy technology and energy informatics, energy law, data law, energy market and socio-psychology that are relevant to the seamless integration of renewable energy resources and the transactive energy systems-in smart microgrids-focusing on distributed frameworks such as peer-to-peer (P2P) energy trading. We clarify issues, identify barriers, and suggest possible solutions to open questions in diversified topics, such as block-chain interoperability, consumer privacy and data sharing, and participation incentivization. Furthermore, we also elaborate challenges associated with cross-disciplinary collaboration and coordination for transactive energy systems, and enumerate the lessons learned from our work so far.

The advent of Large Language Models (LLMs) has ushered in a new era for design science in Information Systems, demanding a paradigm shift in tailoring LLMs design for business contexts. This paper proposes a novel framework to customize LLMs for general business contexts that aims to achieve three fundamental objectives simultaneously: (1) aligning conversational patterns, (2) integrating in-depth domain knowledge, and (3) embodying the soft skills and core principles. We design methodologies to combine domain-specific theory with Supervised Fine Tuning (SFT) in LLMs. We instantiate our proposed framework in the context of medical consultation, creating a GPT-doctor model. Specifically, we construct a comprehensive dataset for SFT by collecting large volume of real doctors consultation records from a leading online medical consultation platform and medical knowledge from professional databases. Additionally, drawing on medical theory, we identify three soft skills and core principles of human doctors including professionalism, explainability, and emotional support, and design approaches to integrate these skills into LLMs. We demonstrate the feasibility and performance of our proposed framework using online experiments with real patients as well as evaluation by domain experts and real consumers. Results demonstrate that fine-tuned GPT-doctor performs on par with human doctors across multiple metrics including medical expertise and consumer preference. Finally, we unravel the black box and examine the sources of model performance improvement from the perspectives of horizontal conversation pattern alignment and vertical medical knowledge evolution. Our proposed framework offers step-by-step principles and guidance for customizing LLMs for real-world business problems.

We present a comprehensive analysis of the implications of artificial latency in the Proposer-Builder Separation framework on the Ethereum network. Focusing on the MEV-Boost auction system, we analyze how strategic latency manipulation affects Maximum Extractable Value yields and network integrity. Our findings reveal both increased profitability for node operators and significant systemic challenges, including heightened network inefficiencies and centralization risks. We empirically validates these insights with a pilot that Chorus One has been operating on Ethereum mainnet. We demonstrate the nuanced effects of latency on bid selection and validator dynamics. Ultimately, this research underscores the need for balanced strategies that optimize Maximum Extractable Value capture while preserving the Ethereum network's decentralization ethos.

The remarkable success of GPT models across various tasks, including toponymy recognition motivates us to assess the performance of the GPT-3 model in the geocoding address parsing task. To ensure that the evaluation more accurately mirrors performance in real-world scenarios with diverse user input qualities and resolve the pressing need for a 'gold standard' evaluation dataset for geocoding systems, we introduce a benchmark dataset of low-quality address descriptions synthesized based on human input patterns mining from actual input logs of a geocoding system in production. This dataset has 21 different input errors and variations; contains over 239,000 address records that are uniquely selected from streets across all U.S. 50 states and D.C.; and consists of three subsets to be used as training, validation, and testing sets. Building on this, we train and gauge the performance of the GPT-3 model in extracting address components, contrasting its performance with transformer-based and LSTM-based models. The evaluation results indicate that Bidirectional LSTM-CRF model has achieved the best performance over these transformer-based models and GPT-3 model. Transformer-based models demonstrate very comparable results compared to the Bidirectional LSTM-CRF model. The GPT-3 model, though trailing in performance, showcases potential in the address parsing task with few-shot examples, exhibiting room for improvement with additional fine-tuning. We open source the code and data of this presented benchmark so that researchers can utilize it for future model development or extend it to evaluate similar tasks, such as document geocoding.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司