亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As required by Industry 4.0, companies will move towards flexible and individual manufacturing. To succeed in this transition, convergence of 5G and time-sensitive networks (TSN) is the most promising technology and has thus attracted considerable interest from industry and standardization groups. However, the delay and jitter of end-to-end (e2e) transmission will get exacerbated if the transmission opportunities are missed in TSN due to the 5G transmission jitter and the clock skew between the two network systems. To mitigate this phenomenon, we propose a novel asynchronous access mechanism (AAM) that isolates the jitter only in the 5G system and ensures zero transmission jitter in TSN. We then exploit AAM to develop an e2e asynchronous traffic scheduling model for coordinated allocation of resources for 5G and TSN to provide e2e transmission delay guarantees for time-critical flows. The results of our extensive simulation of AAM on OMNET++ corroborate the superior performance of AAM and the scheduling model.

相關內容

Depth estimation in surgical video plays a crucial role in many image-guided surgery procedures. However, it is difficult and time consuming to create depth map ground truth datasets in surgical videos due in part to inconsistent brightness and noise in the surgical scene. Therefore, building an accurate and robust self-supervised depth and camera ego-motion estimation system is gaining more attention from the computer vision community. Although several self-supervision methods alleviate the need for ground truth depth maps and poses, they still need known camera intrinsic parameters, which are often missing or not recorded. Moreover, the camera intrinsic prediction methods in existing works depend heavily on the quality of datasets. In this work, we aimed to build a self-supervised depth and ego-motion estimation system which can predict not only accurate depth maps and camera pose, but also camera intrinsic parameters. We proposed a cost-volume-based supervision manner to give the system auxiliary supervision for camera parameters prediction. The experimental results showed that the proposed method improved the accuracy of estimated camera parameters, ego-motion, and depth estimation.

Large Language Models (LLMs) have achieved remarkable success in code completion, as evidenced by their essential roles in developing code assistant services such as Copilot. Being trained on in-file contexts, current LLMs are quite effective in completing code for single source files. However, it is challenging for them to conduct repository-level code completion for large software projects that require cross-file information. Existing research on LLM-based repository-level code completion identifies and integrates cross-file contexts, but it suffers from low accuracy and limited context length of LLMs. In this paper, we argue that Integrated Development Environments (IDEs) can provide direct, accurate and real-time cross-file information for repository-level code completion. We propose IDECoder, a practical framework that leverages IDE native static contexts for cross-context construction and diagnosis results for self-refinement. IDECoder utilizes the rich cross-context information available in IDEs to enhance the capabilities of LLMs of repository-level code completion. We conducted preliminary experiments to validate the performance of IDECoder and observed that this synergy represents a promising trend for future exploration.

Conventional per-title encoding schemes strive to optimize encoding resolutions to deliver the utmost perceptual quality for each bitrate ladder representation. Nevertheless, maintaining encoding time within an acceptable threshold is equally imperative in online streaming applications. Furthermore, modern client devices are equipped with the capability for fast deep-learning-based video super-resolution (VSR) techniques, enhancing the perceptual quality of the decoded bitstream. This suggests that opting for lower resolutions in representations during the encoding process can curtail the overall energy consumption without substantially compromising perceptual quality. In this context, this paper introduces a video super-resolution-based latency-aware optimized bitrate encoding scheme (ViSOR) designed for online adaptive streaming applications. ViSOR determines the encoding resolution for each target bitrate, ensuring the highest achievable perceptual quality after VSR within the bound of a maximum acceptable latency. Random forest-based prediction models are trained to predict the perceptual quality after VSR and the encoding time for each resolution using the spatiotemporal features extracted for each video segment. Experimental results show that ViSOR targeting fast super-resolution convolutional neural network (FSRCNN) achieves an overall average bitrate reduction of 24.65 % and 32.70 % to maintain the same PSNR and VMAF, compared to the HTTP Live Streaming (HLS) bitrate ladder encoding of 4 s segments using the x265 encoder, when the maximum acceptable latency for each representation is set as two seconds. Considering a just noticeable difference (JND) of six VMAF points, the average cumulative storage consumption and encoding energy for each segment is reduced by 79.32 % and 68.21 %, respectively, contributing towards greener streaming.

We propose a novel family of decision-aware surrogate losses, called Perturbation Gradient (PG) losses, for the predict-then-optimize framework. These losses directly approximate the downstream decision loss and can be optimized using off-the-shelf gradient-based methods. Importantly, unlike existing surrogate losses, the approximation error of our PG losses vanishes as the number of samples grows. This implies that optimizing our surrogate loss yields a best-in-class policy asymptotically, even in misspecified settings. This is the first such result in misspecified settings and we provide numerical evidence confirming our PG losses substantively outperform existing proposals when the underlying model is misspecified and the noise is not centrally symmetric. Insofar as misspecification is commonplace in practice -- especially when we might prefer a simpler, more interpretable model -- PG losses offer a novel, theoretically justified, method for computationally tractable decision-aware learning.

We propose novel "clustering and conquer" procedures for the parallel large-scale ranking and selection (R&S) problem, which leverage correlation information for clustering to break the bottleneck of sample efficiency. In parallel computing environments, correlation-based clustering can achieve an $\mathcal{O}(p)$ sample complexity reduction rate, which is the optimal reduction rate theoretically attainable. Our proposed framework is versatile, allowing for seamless integration of various prevalent R&S methods under both fixed-budget and fixed-precision paradigms. It can achieve improvements without the necessity of highly accurate correlation estimation and precise clustering. In large-scale AI applications such as neural architecture search, a screening-free version of our procedure surprisingly surpasses fully-sequential benchmarks in terms of sample efficiency. This suggests that leveraging valuable structural information, such as correlation, is a viable path to bypassing the traditional need for screening via pairwise comparison--a step previously deemed essential for high sample efficiency but problematic for parallelization. Additionally, we propose a parallel few-shot clustering algorithm tailored for large-scale problems.

Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of natural phenomena at a wide range of spatial and temporal scales, giving rise to a new area of research known as AI for science (AI4Science). Being an emerging research paradigm, AI4Science is unique in that it is an enormous and highly interdisciplinary area. Thus, a unified and technical treatment of this field is needed yet challenging. This work aims to provide a technically thorough account of a subarea of AI4Science; namely, AI for quantum, atomistic, and continuum systems. These areas aim at understanding the physical world from the subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales and form an important subarea of AI4Science. A unique advantage of focusing on these areas is that they largely share a common set of challenges, thereby allowing a unified and foundational treatment. A key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods. We provide an in-depth yet intuitive account of techniques to achieve equivariance to symmetry transformations. We also discuss other common technical challenges, including explainability, out-of-distribution generalization, knowledge transfer with foundation and large language models, and uncertainty quantification. To facilitate learning and education, we provide categorized lists of resources that we found to be useful. We strive to be thorough and unified and hope this initial effort may trigger more community interests and efforts to further advance AI4Science.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

We present a monocular Simultaneous Localization and Mapping (SLAM) using high level object and plane landmarks, in addition to points. The resulting map is denser, more compact and meaningful compared to point only SLAM. We first propose a high order graphical model to jointly infer the 3D object and layout planes from single image considering occlusions and semantic constraints. The extracted cuboid object and layout planes are further optimized in a unified SLAM framework. Objects and planes can provide more semantic constraints such as Manhattan and object supporting relationships compared to points. Experiments on various public and collected datasets including ICL NUIM and TUM mono show that our algorithm can improve camera localization accuracy compared to state-of-the-art SLAM and also generate dense maps in many structured environments.

北京阿比特科技有限公司