亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs) have achieved remarkable success in code completion, as evidenced by their essential roles in developing code assistant services such as Copilot. Being trained on in-file contexts, current LLMs are quite effective in completing code for single source files. However, it is challenging for them to conduct repository-level code completion for large software projects that require cross-file information. Existing research on LLM-based repository-level code completion identifies and integrates cross-file contexts, but it suffers from low accuracy and limited context length of LLMs. In this paper, we argue that Integrated Development Environments (IDEs) can provide direct, accurate and real-time cross-file information for repository-level code completion. We propose IDECoder, a practical framework that leverages IDE native static contexts for cross-context construction and diagnosis results for self-refinement. IDECoder utilizes the rich cross-context information available in IDEs to enhance the capabilities of LLMs of repository-level code completion. We conducted preliminary experiments to validate the performance of IDECoder and observed that this synergy represents a promising trend for future exploration.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集(ji)成,VLSI雜志。 Publisher:Elsevier。 SIT:

Grading short answer questions automatically with interpretable reasoning behind the grading decision is a challenging goal for current transformer approaches. Justification cue detection, in combination with logical reasoners, has shown a promising direction for neuro-symbolic architectures in ASAG. But, one of the main challenges is the requirement of annotated justification cues in the students' responses, which only exist for a few ASAG datasets. To overcome this challenge, we contribute (1) a weakly supervised annotation procedure for justification cues in ASAG datasets, and (2) a neuro-symbolic model for explainable ASAG based on justification cues. Our approach improves upon the RMSE by 0.24 to 0.3 compared to the state-of-the-art on the Short Answer Feedback dataset in a bilingual, multi-domain, and multi-question training setup. This result shows that our approach provides a promising direction for generating high-quality grades and accompanying explanations for future research in ASAG and educational NLP.

Object detection methods under known single degradations have been extensively investigated. However, existing approaches require prior knowledge of the degradation type and train a separate model for each, limiting their practical applications in unpredictable environments. To address this challenge, we propose a chain-of-thought (CoT) prompted adaptive enhancer, CPA-Enhancer, for object detection under unknown degradations. Specifically, CPA-Enhancer progressively adapts its enhancement strategy under the step-by-step guidance of CoT prompts, that encode degradation-related information. To the best of our knowledge, it's the first work that exploits CoT prompting for object detection tasks. Overall, CPA-Enhancer is a plug-and-play enhancement model that can be integrated into any generic detectors to achieve substantial gains on degraded images, without knowing the degradation type priorly. Experimental results demonstrate that CPA-Enhancer not only sets the new state of the art for object detection but also boosts the performance of other downstream vision tasks under unknown degradations.

The Gaussian Mechanism (GM), which consists in adding Gaussian noise to a vector-valued query before releasing it, is a standard privacy protection mechanism. In particular, given that the query respects some L2 sensitivity property (the L2 distance between outputs on any two neighboring inputs is bounded), GM guarantees R\'enyi Differential Privacy (RDP). Unfortunately, precisely bounding the L2 sensitivity can be hard, thus leading to loose privacy bounds. In this work, we consider a Relative L2 sensitivity assumption, in which the bound on the distance between two query outputs may also depend on their norm. Leveraging this assumption, we introduce the Relative Gaussian Mechanism (RGM), in which the variance of the noise depends on the norm of the output. We prove tight bounds on the RDP parameters under relative L2 sensitivity, and characterize the privacy loss incurred by using output-dependent noise. In particular, we show that RGM naturally adapts to a latent variable that would control the norm of the output. Finally, we instantiate our framework to show tight guarantees for Private Gradient Descent, a problem that naturally fits our relative L2 sensitivity assumption.

Large Language Models (LLMs) have emerged as integral tools for reasoning, planning, and decision-making, drawing upon their extensive world knowledge and proficiency in language-related tasks. LLMs thus hold tremendous potential for natural language interaction within multi-agent systems to foster cooperation. However, LLM agents tend to over-report and comply with any instruction, which may result in information redundancy and confusion in multi-agent cooperation. Inspired by human organizations, this paper introduces a framework that imposes prompt-based organization structures on LLM agents to mitigate these problems. Through a series of experiments with embodied LLM agents and human-agent collaboration, our results highlight the impact of designated leadership on team efficiency, shedding light on the leadership qualities displayed by LLM agents and their spontaneous cooperative behaviors. Further, we harness the potential of LLMs to propose enhanced organizational prompts, via a Criticize-Reflect process, resulting in novel organization structures that reduce communication costs and enhance team efficiency.

Neural Language Models of Code, or Neural Code Models (NCMs), are rapidly progressing from research prototypes to commercial developer tools. As such, understanding the capabilities and limitations of such models is becoming critical. However, the abilities of these models are typically measured using automated metrics that often only reveal a portion of their real-world performance. While, in general, the performance of NCMs appears promising, currently much is unknown about how such models arrive at decisions. To this end, this paper introduces $do_{code}$, a post hoc interpretability method specific to NCMs that is capable of explaining model predictions. $do_{code}$ is based upon causal inference to enable programming language-oriented explanations. While the theoretical underpinnings of $do_{code}$ are extensible to exploring different model properties, we provide a concrete instantiation that aims to mitigate the impact of spurious correlations by grounding explanations of model behavior in properties of programming languages. To demonstrate the practical benefit of $do_{code}$, we illustrate the insights that our framework can provide by performing a case study on two popular deep learning architectures and ten NCMs. The results of this case study illustrate that our studied NCMs are sensitive to changes in code syntax. All our NCMs, except for the BERT-like model, statistically learn to predict tokens related to blocks of code (\eg brackets, parenthesis, semicolon) with less confounding bias as compared to other programming language constructs. These insights demonstrate the potential of $do_{code}$ as a useful method to detect and facilitate the elimination of confounding bias in NCMs.

Graph Neural Networks (GNNs) have gained considerable attention for their potential in addressing challenges posed by complex graph-structured data in diverse domains. However, accurately annotating graph data for training is difficult due to the inherent complexity and interconnectedness of graphs. To tackle this issue, we propose a novel graph representation learning method that enables GNN models to effectively learn discriminative information even in the presence of noisy labels within the context of Partially Labeled Learning (PLL). PLL is a critical weakly supervised learning problem, where each training instance is associated with a set of candidate labels, including both the true label and additional noisy labels. Our approach leverages potential cause extraction to obtain graph data that exhibit a higher likelihood of possessing a causal relationship with the labels. By incorporating auxiliary training based on the extracted graph data, our model can effectively filter out the noise contained in the labels. We support the rationale behind our approach with a series of theoretical analyses. Moreover, we conduct extensive evaluations and ablation studies on multiple datasets, demonstrating the superiority of our proposed method.

As discussions around 6G begin, it is important to carefully quantify the spectral efficiency gains actually realized by deployed 5G networks as compared to 4G through various enhancements such as higher modulation, beamforming, and MIMO. This will inform the design of future cellular systems, especially in the mid-bands, which provide a good balance between bandwidth and propagation. Similar to 4G, 5G also utilizes low-band (<1 GHz) and mid-band spectrum (1 to 6 GHz), and hence comparing the performance of 4G and 5G in these bands will provide insights into how further improvements can be attained. In this work, we address a crucial question: is the performance boost in 5G compared to 4G primarily a result of increased bandwidth, or do the other enhancements play significant roles, and if so, under what circumstances? Hence, we conduct city-wide measurements of 4G and 5G cellular networks deployed in low- and mid-bands in Chicago and Minneapolis, and carefully quantify the contributions of different aspects of 5G advancements to its improved throughput performance. Our analyses show that (i) compared to 4G, the throughput improvement in 5G today is mainly influenced by the wider channel bandwidth, both from single channels and channel aggregation, (ii) in addition to wider channels, improved 5G throughput requires better signal conditions, which can be delivered by denser deployment and/or use of beamforming in mid-bands, (iii) the channel rank in real-world environments rarely supports the full 4 layers of 4x4 MIMO and (iv) advanced features such as MU-MIMO and higher order modulation such as 1024-QAM have yet to be widely deployed. These observations and conclusions lead one to consider designing the next generation of cellular systems to have wider channels, perhaps with improved channel aggregation, dense deployment with more beams.

Foundation models, such as Large language Models (LLMs), have attracted significant amount of interest due to their large number of applications. Existing works show that appropriate prompt design, such as Chain-of-Thoughts, can unlock LLM's powerful capacity in diverse areas. However, when handling tasks involving repetitive sub-tasks and/or deceptive contents, such as arithmetic calculation and article-level fake news detection, existing prompting strategies either suffers from insufficient expressive power or intermediate errors triggered by hallucination. To make LLM more discerning to such intermediate errors, we propose to guide LLM with a Divide-and-Conquer program that simultaneously ensures superior expressive power and disentangles task decomposition, sub-task resolution, and resolution assembly process. Theoretic analysis reveals that our strategy can guide LLM to extend the expressive power of fixed-depth Transformer. Experiments indicate that our proposed method can achieve better performance than typical prompting strategies in tasks bothered by intermediate errors and deceptive contents, such as large integer multiplication, hallucination detection and misinformation detection.

Conventional text-to-SQL parsers are not good at synthesizing complex SQL queries that involve multiple tables or columns, due to the challenges inherent in identifying the correct schema items and performing accurate alignment between question and schema items. To address the above issue, we present a schema-aware multi-task learning framework (named MTSQL) for complicated SQL queries. Specifically, we design a schema linking discriminator module to distinguish the valid question-schema linkings, which explicitly instructs the encoder by distinctive linking relations to enhance the alignment quality. On the decoder side, we define 6-type relationships to describe the connections between tables and columns (e.g., WHERE_TC), and introduce an operator-centric triple extractor to recognize those associated schema items with the predefined relationship. Also, we establish a rule set of grammar constraints via the predicted triples to filter the proper SQL operators and schema items during the SQL generation. On Spider, a cross-domain challenging text-to-SQL benchmark, experimental results indicate that MTSQL is more effective than baselines, especially in extremely hard scenarios. Moreover, further analyses verify that our approach leads to promising improvements for complicated SQL queries.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

北京阿比特科技有限公司