Localization for autonomous robots in prior maps is crucial for their functionality. This paper offers a solution to this problem for indoor environments called InstaLoc, which operates on an individual lidar scan to localize it within a prior map. We draw on inspiration from how humans navigate and position themselves by recognizing the layout of distinctive objects and structures. Mimicking the human approach, InstaLoc identifies and matches object instances in the scene with those from a prior map. As far as we know, this is the first method to use panoptic segmentation directly inferring on 3D lidar scans for indoor localization. InstaLoc operates through two networks based on spatially sparse tensors to directly infer dense 3D lidar point clouds. The first network is a panoptic segmentation network that produces object instances and their semantic classes. The second smaller network produces a descriptor for each object instance. A consensus based matching algorithm then matches the instances to the prior map and estimates a six degrees of freedom (DoF) pose for the input cloud in the prior map. The significance of InstaLoc is that it has two efficient networks. It requires only one to two hours of training on a mobile GPU and runs in real-time at 1 Hz. Our method achieves between two and four times more detections when localizing, as compared to baseline methods, and achieves higher precision on these detections.
Feature matching is a crucial technique in computer vision. A unified perspective for this task is to treat it as a searching problem, aiming at an efficient search strategy to narrow the search space to point matches between images. One of the key aspects of search strategy is the search space, which in current approaches is not carefully defined, resulting in limited matching accuracy. This paper, thus, pays attention to the search space and proposes to set the initial search space for point matching as the matched image areas containing prominent semantic, named semantic area matches. This search space favors point matching by salient features and alleviates the accuracy limitation in recent Transformer-based matching methods. To achieve this search space, we introduce a hierarchical feature matching framework: Area to Point Matching (A2PM), to first find semantic area matches between images and later perform point matching on area matches. We further propose Semantic and Geometry Area Matching (SGAM) method to realize this framework, which utilizes semantic prior and geometry consistency to establish accurate area matches between images. By integrating SGAM with off-the-shelf state-of-the-art matchers, our method, adopting the A2PM framework, achieves encouraging precision improvements in massive point matching and pose estimation experiments.
Detection and tracking of moving objects is an essential component in environmental perception for autonomous driving. In the flourishing field of multi-view 3D camera-based detectors, different transformer-based pipelines are designed to learn queries in 3D space from 2D feature maps of perspective views, but the dominant dense BEV query mechanism is computationally inefficient. This paper proposes Sparse R-CNN 3D (SRCN3D), a novel two-stage fully-sparse detector that incorporates sparse queries, sparse attention with box-wise sampling, and sparse prediction. SRCN3D adopts a cascade structure with the twin-track update of both a fixed number of query boxes and latent query features. Our novel sparse feature sampling module only utilizes local 2D region of interest (RoI) features calculated by the projection of 3D query boxes for further box refinement, leading to a fully-convolutional and deployment-friendly pipeline. For multi-object tracking, motion features, query features and RoI features are comprehensively utilized in multi-hypotheses data association. Extensive experiments on nuScenes dataset demonstrate that SRCN3D achieves competitive performance in both 3D object detection and multi-object tracking tasks, while also exhibiting superior efficiency compared to transformer-based methods. Code and models are available at //github.com/synsin0/SRCN3D.
3D single object tracking with point clouds is a critical task in 3D computer vision. Previous methods usually input the last two frames and use the predicted box to get the template point cloud in previous frame and the search area point cloud in the current frame respectively, then use similarity-based or motion-based methods to predict the current box. Although these methods achieved good tracking performance, they ignore the historical information of the target, which is important for tracking. In this paper, compared to inputting two frames of point clouds, we input multi-frame of point clouds to encode the spatio-temporal information of the target and learn the motion information of the target implicitly, which could build the correlations among different frames to track the target in the current frame efficiently. Meanwhile, rather than directly using the point feature for feature fusion, we first crop the point cloud features into many patches and then use sparse attention mechanism to encode the patch-level similarity and finally fuse the multi-frame features. Extensive experiments show that our method achieves competitive results on challenging large-scale benchmarks (62.6% in KITTI and 49.66% in NuScenes).
Augmented Reality (AR) solutions are providing tools that could improve applications in the medical and industrial fields. Augmentation can provide additional information in training, visualization, and work scenarios, to increase efficiency, reliability, and safety, while improving communication with other devices and systems on the network. Unfortunately, tasks in these fields often require both hands to execute, reducing the variety of input methods suitable to control AR applications. People with certain physical disabilities, where they are not able to use their hands, are also negatively impacted when using these devices. The goal of this work is to provide novel hand-free interfacing methods, using AR technology, in association with AI support approaches to produce an improved Human-Computer interaction solution.
Human pose estimation aims to locate the human body parts and build human body representation (e.g., body skeleton) from input data such as images and videos. It has drawn increasing attention during the past decade and has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality. Although the recently developed deep learning-based solutions have achieved high performance in human pose estimation, there still remain challenges due to insufficient training data, depth ambiguities, and occlusions. The goal of this survey paper is to provide a comprehensive review of recent deep learning-based solutions for both 2D and 3D pose estimation via a systematic analysis and comparison of these solutions based on their input data and inference procedures. More than 240 research papers since 2014 are covered in this survey. Furthermore, 2D and 3D human pose estimation datasets and evaluation metrics are included. Quantitative performance comparisons of the reviewed methods on popular datasets are summarized and discussed. Finally, the challenges involved, applications, and future research directions are concluded. We also provide a regularly updated project page on: \url{//github.com/zczcwh/DL-HPE}
Deep neural networks have been able to outperform humans in some cases like image recognition and image classification. However, with the emergence of various novel categories, the ability to continuously widen the learning capability of such networks from limited samples, still remains a challenge. Techniques like Meta-Learning and/or few-shot learning showed promising results, where they can learn or generalize to a novel category/task based on prior knowledge. In this paper, we perform a study of the existing few-shot meta-learning techniques in the computer vision domain based on their method and evaluation metrics. We provide a taxonomy for the techniques and categorize them as data-augmentation, embedding, optimization and semantics based learning for few-shot, one-shot and zero-shot settings. We then describe the seminal work done in each category and discuss their approach towards solving the predicament of learning from few samples. Lastly we provide a comparison of these techniques on the commonly used benchmark datasets: Omniglot, and MiniImagenet, along with a discussion towards the future direction of improving the performance of these techniques towards the final goal of outperforming humans.
Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.
This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.
The task of detecting 3D objects in point cloud has a pivotal role in many real-world applications. However, 3D object detection performance is behind that of 2D object detection due to the lack of powerful 3D feature extraction methods. In order to address this issue, we propose to build a 3D backbone network to learn rich 3D feature maps by using sparse 3D CNN operations for 3D object detection in point cloud. The 3D backbone network can inherently learn 3D features from almost raw data without compressing point cloud into multiple 2D images and generate rich feature maps for object detection. The sparse 3D CNN takes full advantages of the sparsity in the 3D point cloud to accelerate computation and save memory, which makes the 3D backbone network achievable. Empirical experiments are conducted on the KITTI benchmark and results show that the proposed method can achieve state-of-the-art performance for 3D object detection.
Deep neural network architectures have traditionally been designed and explored with human expertise in a long-lasting trial-and-error process. This process requires huge amount of time, expertise, and resources. To address this tedious problem, we propose a novel algorithm to optimally find hyperparameters of a deep network architecture automatically. We specifically focus on designing neural architectures for medical image segmentation task. Our proposed method is based on a policy gradient reinforcement learning for which the reward function is assigned a segmentation evaluation utility (i.e., dice index). We show the efficacy of the proposed method with its low computational cost in comparison with the state-of-the-art medical image segmentation networks. We also present a new architecture design, a densely connected encoder-decoder CNN, as a strong baseline architecture to apply the proposed hyperparameter search algorithm. We apply the proposed algorithm to each layer of the baseline architectures. As an application, we train the proposed system on cine cardiac MR images from Automated Cardiac Diagnosis Challenge (ACDC) MICCAI 2017. Starting from a baseline segmentation architecture, the resulting network architecture obtains the state-of-the-art results in accuracy without performing any trial-and-error based architecture design approaches or close supervision of the hyperparameters changes.