亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The list-decodable code has been an active topic in theoretical computer science since the seminal papers of M. Sudan and V. Guruswami in 1997-1998. List-decodable codes are also considered in rank-metric, subspace metric, cover-metric, pair metric and insdel metric settings. In this paper we show that rates, list-decodable radius and list sizes are closely related to the classical topic of covering codes. We prove new general simple but strong upper bounds for list-decodable codes in general finite metric spaces based on various covering codes of finite metric spaces. The general covering code upper bounds can apply to the case when the volumes of the balls depend on the centers, not only on the radius case. Then any good upper bound on the covering radius or the size of covering code imply a good upper bound on the size of list-decodable codes. Hence the list-decodablity of codes is a strong constraint from the view of covering codes on general finite metric spaces. Our results give exponential improvements on the recent generalized Singleton upper bound of Shangguan and Tamo in STOC 2020 for Hamming metric list-decodable codes, when the code lengths are very large. The asymptotic forms of covering code bounds can partially recover the Blinovsky bound and the combinatorial bound of Guruswami-H{\aa}stad-Sudan-Zuckerman in Hamming metric setting. We also suggest to study the combinatorial covering list-decodable codes as a natural generalization of combinatorial list-decodable codes. We apply our general covering code upper bounds for list-decodable rank-metric codes, list-decodable subspace codes, list-decodable insertion codes and list-decodable deletion codes. Some new better results about non-list-decodability of rank-metric codes and subspace codes are obtained.

相關內容

We study the problem of robustly estimating the parameter $p$ of an Erd\H{o}s-R\'enyi random graph on $n$ nodes, where a $\gamma$ fraction of nodes may be adversarially corrupted. After showing the deficiencies of canonical estimators, we design a computationally-efficient spectral algorithm which estimates $p$ up to accuracy $\tilde O(\sqrt{p(1-p)}/n + \gamma\sqrt{p(1-p)} /\sqrt{n}+ \gamma/n)$ for $\gamma < 1/60$. Furthermore, we give an inefficient algorithm with similar accuracy for all $\gamma <1/2$, the information-theoretic limit. Finally, we prove a nearly-matching statistical lower bound, showing that the error of our algorithms is optimal up to logarithmic factors.

We propose a deterministic Kaczmarz algorithm for solving linear systems $A\x=\b$. Different from previous Kaczmarz algorithms, we use reflections in each step of the iteration. This generates a series of points distributed with patterns on a sphere centered at a solution. Firstly, we prove that taking the average of $O(\eta/\epsilon)$ points leads to an effective approximation of the solution up to relative error $\epsilon$, where $\eta$ is a parameter depending on $A$ and can be bounded above by the square of the condition number. We also show how to select these points efficiently. From the numerical tests, our Kaczmarz algorithm usually converges more quickly than the (block) randomized Kaczmarz algorithms. Secondly, when the linear system is consistent, the Kaczmarz algorithm returns the solution that has the minimal distance to the initial vector. This gives a method to solve the least-norm problem. Finally, we prove that our Kaczmarz algorithm indeed solves the linear system $A^TW^{-1}A \x = A^TW^{-1} \b$, where $W$ is the low-triangular matrix such that $W+W^T=2AA^T$. The relationship between this linear system and the original one is studied.

We derive the form of the variance-covariance matrix for any affine equivariant matrix-valued statistics when sampling from complex elliptical distributions. We then use this result to derive the variance-covariance matrix of the sample covariance matrix (SCM) as well as its theoretical mean squared error (MSE) when finite fourth-order moments exist. Finally, illustrative examples of the formulas are presented.

Quasi-polycyclic (QP for short) codes over a finite chain ring $R$ are a generalization of quasi-cyclic codes, and these codes can be viewed as an $R[x]$-submodule of $\mathcal{R}_m^{\ell}$, where $\mathcal{R}_m:= R[x]/\langle f\rangle$, and $f$ is a monic polynomial of degree $m$ over $R$. If $f$ factors uniquely into monic and coprime basic irreducibles, then their algebraic structure allow us to characterize the generator polynomials and the minimal generating sets of 1-generator QP codes as $R$-modules. In addition, we also determine the parity check polynomials for these codes by using the strong Gr\"{o}bner bases. In particular, via Magma system, some quaternary codes with new parameters are derived from these 1-generator QP codes.

A locally testable code (LTC) is an error-correcting code that has a property-tester. The tester reads $q$ bits that are randomly chosen, and rejects words with probability proportional to their distance from the code. The parameter $q$ is called the locality of the tester. LTCs were initially studied as important components of PCPs, and since then the topic has evolved on its own. High rate LTCs could be useful in practice: before attempting to decode a received word, one can save time by first quickly testing if it is close to the code. An outstanding open question has been whether there exist "$c^3$-LTCs", namely LTCs with *c*onstant rate, *c*onstant distance, and *c*onstant locality. In this work we construct such codes based on a new two-dimensional complex which we call a left-right Cayley complex. This is essentially a graph which, in addition to vertices and edges, also has squares. Our codes can be viewed as a two-dimensional version of (the one-dimensional) expander codes, where the codewords are functions on the squares rather than on the edges.

We prove the existence of Reed-Solomon codes of any desired rate $R \in (0,1)$ that are combinatorially list-decodable up to a radius approaching $1-R$, which is the information-theoretic limit. This is established by starting with the full-length $[q,k]_q$ Reed-Solomon code over a field $\mathbb F_q$ that is polynomially larger than the desired dimension $k$, and "puncturing" it by including $k/R$ randomly chosen codeword positions. Our puncturing result is more general and applies to any code with large minimum distance: we show that a random rate $R$ puncturing of an $\mathbb F_q$-linear "mother" code whose relative distance is close enough to $1-1/q$ is list-decodable up to a radius approaching the $q$-ary list-decoding capacity bound $h_q^{-1}(1-R)$. In fact, for large $q$, or under a stronger assumption of low-bias of the mother-code, we prove that the threshold rate for list-decodability with a specific list-size (and more generally, any "local" property) of the random puncturing approaches that of fully random linear codes. Thus, all current (and future) list-decodability bounds shown for random linear codes extend automatically to random puncturings of any low-bias (or large alphabet) code. This can be viewed as a general derandomization result applicable to random linear codes. To obtain our conclusion about Reed-Solomon codes, we establish some hashing properties of field trace maps that allow us to reduce the list-decodability of RS codes to its associated trace (dual-BCH) code, and then apply our puncturing theorem to the latter. Our approach implies, essentially for free, optimal rate list-recoverability of punctured RS codes as well.

Solutions to many partial differential equations satisfy certain bounds or constraints. For example, the density and pressure are positive for equations of fluid dynamics, and in the relativistic case the fluid velocity is upper bounded by the speed of light, etc. As widely realized, it is crucial to develop bound-preserving numerical methods that preserve such intrinsic constraints. Exploring provably bound-preserving schemes has attracted much attention and is actively studied in recent years. This is however still a challenging task for many systems especially those involving nonlinear constraints. Based on some key insights from geometry, we systematically propose an innovative and general framework, referred to as geometric quasilinearization (GQL), which paves a new effective way for studying bound-preserving problems with nonlinear constraints. The essential idea of GQL is to equivalently transfer all nonlinear constraints into linear ones, through properly introducing some free auxiliary variables. We establish the fundamental principle and general theory of GQL via the geometric properties of convex regions, and propose three simple effective methods for constructing GQL. We apply the GQL approach to a variety of partial differential equations, and demonstrate its effectiveness and remarkable advantages for studying bound-preserving schemes, by diverse challenging examples and applications which cannot be easily handled by direct or traditional approaches.

An error correcting code ($\mathsf{ECC}$) allows a sender to send a message to a receiver such that even if a constant fraction of the communicated bits are corrupted, the receiver can still learn the message correctly. Due to their importance and fundamental nature, $\mathsf{ECC}$s have been extensively studied, one of the main goals being to maximize the fraction of errors that the $\mathsf{ECC}$ is resilient to. For adversarial erasure errors (over a binary channel) the maximal error resilience of an $\mathsf{ECC}$ is $\frac12$ of the communicated bits. In this work, we break this $\frac12$ barrier by introducing the notion of an interactive error correcting code ($\mathsf{iECC}$) and constructing an $\mathsf{iECC}$ that is resilient to adversarial erasure of $\frac35$ of the total communicated bits. We emphasize that the adversary can corrupt both the sending party and the receiving party, and that both parties' rounds contribute to the adversary's budget. We also prove an impossibility (upper) bound of $\frac23$ on the maximal resilience of any binary $\mathsf{iECC}$ to adversarial erasures. In the bit flip setting, we prove an impossibility bound of $\frac27$.

An improved Singleton-type upper bound is presented for the list decoding radius of linear codes, in terms of the code parameters [n,k,d] and the list size L. L-MDS codes are then defined as codes that attain this bound (under a slightly stronger notion of list decodability), with 1-MDS codes corresponding to ordinary linear MDS codes. Several properties of such codes are presented; in particular, it is shown that the 2-MDS property is preserved under duality. Finally, explicit constructions for 2-MDS codes are presented through generalized Reed-Solomon (GRS) codes.

Machine learning methods are powerful in distinguishing different phases of matter in an automated way and provide a new perspective on the study of physical phenomena. We train a Restricted Boltzmann Machine (RBM) on data constructed with spin configurations sampled from the Ising Hamiltonian at different values of temperature and external magnetic field using Monte Carlo methods. From the trained machine we obtain the flow of iterative reconstruction of spin state configurations to faithfully reproduce the observables of the physical system. We find that the flow of the trained RBM approaches the spin configurations of the maximal possible specific heat which resemble the near criticality region of the Ising model. In the special case of the vanishing magnetic field the trained RBM converges to the critical point of the Renormalization Group (RG) flow of the lattice model. Our results suggest an alternative explanation of how the machine identifies the physical phase transitions, by recognizing certain properties of the configuration like the maximization of the specific heat, instead of associating directly the recognition procedure with the RG flow and its fixed points. Then from the reconstructed data we deduce the critical exponent associated to the magnetization to find satisfactory agreement with the actual physical value. We assume no prior knowledge about the criticality of the system and its Hamiltonian.

北京阿比特科技有限公司