Numerical vector aggregation plays a crucial role in privacy-sensitive applications, such as distributed gradient estimation in federated learning and statistical analysis of key-value data. In the context of local differential privacy, this study provides a tight minimax error bound of $O(\frac{ds}{n\epsilon^2})$, where $d$ represents the dimension of the numerical vector and $s$ denotes the number of non-zero entries. By converting the conditional/unconditional numerical mean estimation problem into a frequency estimation problem, we develop an optimal and efficient mechanism called Collision. In contrast, existing methods exhibit sub-optimal error rates of $O(\frac{d^2}{n\epsilon^2})$ or $O(\frac{ds^2}{n\epsilon^2})$. Specifically, for unconditional mean estimation, we leverage the negative correlation between two frequencies in each dimension and propose the CoCo mechanism, which further reduces estimation errors for mean values compared to Collision. Moreover, to surpass the error barrier in local privacy, we examine privacy amplification in the shuffle model for the proposed mechanisms and derive precisely tight amplification bounds. Our experiments validate and compare our mechanisms with existing approaches, demonstrating significant error reductions for frequency estimation and mean estimation on numerical vectors.
Federated Learning, as a popular paradigm for collaborative training, is vulnerable against privacy attacks. Different privacy levels regarding users' attitudes need to be satisfied locally, while a strict privacy guarantee for the global model is also required centrally. Personalized Local Differential Privacy (PLDP) is suitable for preserving users' varying local privacy, yet only provides a central privacy guarantee equivalent to the worst-case local privacy level. Thus, achieving strong central privacy as well as personalized local privacy with a utility-promising model is a challenging problem. In this work, a general framework (APES) is built up to strengthen model privacy under personalized local privacy by leveraging the privacy amplification effect of the shuffle model. To tighten the privacy bound, we quantify the heterogeneous contributions to the central privacy user by user. The contributions are characterized by the ability of generating "echos" from the perturbation of each user, which is carefully measured by proposed methods Neighbor Divergence and Clip-Laplace Mechanism. Furthermore, we propose a refined framework (S-APES) with the post-sparsification technique to reduce privacy loss in high-dimension scenarios. To the best of our knowledge, the impact of shuffling on personalized local privacy is considered for the first time. We provide a strong privacy amplification effect, and the bound is tighter than the baseline result based on existing methods for uniform local privacy. Experiments demonstrate that our frameworks ensure comparable or higher accuracy for the global model.
We consider the problem of online interval scheduling on a single machine, where intervals arrive online in an order chosen by an adversary, and the algorithm must output a set of non-conflicting intervals. Traditionally in scheduling theory, it is assumed that intervals arrive in order of increasing start times. We drop that assumption and allow for intervals to arrive in any possible order. We call this variant any-order interval selection (AOIS). We assume that some online acceptances can be revoked, but a feasible solution must always be maintained. For unweighted intervals and deterministic algorithms, this problem is unbounded. Under the assumption that there are at most $k$ different interval lengths, we give a simple algorithm that achieves a competitive ratio of $2k$ and show that it is optimal amongst deterministic algorithms, and a restricted class of randomized algorithms we call memoryless, contributing to an open question by Adler and Azar 2003; namely whether a randomized algorithm without access to history can achieve a constant competitive ratio. We connect our model to the problem of call control on the line, and show how the algorithms of Garay et al. 1997 can be applied to our setting, resulting in an optimal algorithm for the case of proportional weights. We also discuss the case of intervals with arbitrary weights, and show how to convert the single-length algorithm of Fung et al. 2014 into a classify and randomly select algorithm that achieves a competitive ratio of 2k. Finally, we consider the case of intervals arriving in a random order, and show that for single-lengthed instances, a one-directional algorithm (i.e. replacing intervals in one direction), is the only deterministic memoryless algorithm that can possibly benefit from random arrivals.
When designing interventions in public health, development, and education, decision makers rely on social network data to target a small number of people, capitalizing on peer effects and social contagion to bring about the most welfare benefits to the population. Developing new methods that are privacy-preserving for network data collection and targeted interventions is critical for designing sustainable public health and development interventions on social networks. In a similar vein, social media platforms rely on network data and information from past diffusions to organize their ad campaign and improve the efficacy of targeted advertising. Ensuring that these network operations do not violate users' privacy is critical to the sustainability of social media platforms and their ad economies. We study privacy guarantees for influence maximization algorithms when the social network is unknown, and the inputs are samples of prior influence cascades that are collected at random. Building on recent results that address seeding with costly network information, our privacy-preserving algorithms introduce randomization in the collected data or the algorithm output, and can bound each node's (or group of nodes') privacy loss in deciding whether or not their data should be included in the algorithm input. We provide theoretical guarantees of the seeding performance with a limited sample size subject to differential privacy budgets in both central and local privacy regimes. Simulations on synthetic and empirical network datasets reveal the diminishing value of network information with decreasing privacy budget in both regimes.
Undirected, binary network data consist of indicators of symmetric relations between pairs of actors. Regression models of such data allow for the estimation of effects of exogenous covariates on the network and for prediction of unobserved data. Ideally, estimators of the regression parameters should account for the inherent dependencies among relations in the network that involve the same actor. To account for such dependencies, researchers have developed a host of latent variable network models, however, estimation of many latent variable network models is computationally onerous and which model is best to base inference upon may not be clear. We propose the Probit Exchangeable (PX) model for undirected binary network data that is based on an assumption of exchangeability, which is common to many of the latent variable network models in the literature. The PX model can represent the first two moments of any exchangeable network model. We leverage the EM algorithm to obtain an approximate maximum likelihood estimator of the PX model that is extremely computationally efficient. Using simulation studies, we demonstrate the improvement in estimation of regression coefficients of the proposed model over existing latent variable network models. In an analysis of purchases of politically-aligned books, we demonstrate political polarization in purchase behavior and show that the proposed estimator significantly reduces runtime relative to estimators of latent variable network models, while maintaining predictive performance.
Cross-validation is the standard approach for tuning parameter selection in many non-parametric regression problems. However its use is less common in change-point regression, perhaps as its prediction error-based criterion may appear to permit small spurious changes and hence be less well-suited to estimation of the number and location of change-points. We show that in fact the problems of cross-validation with squared error loss are more severe and can lead to systematic under- or over-estimation of the number of change-points, and highly suboptimal estimation of the mean function in simple settings where changes are easily detectable. We propose two simple approaches to remedy these issues, the first involving the use of absolute error rather than squared error loss, and the second involving modifying the holdout sets used. For the latter, we provide conditions that permit consistent estimation of the number of change-points for a general change-point estimation procedure. We show these conditions are satisfied for optimal partitioning using new results on its performance when supplied with the incorrect number of change-points. Numerical experiments show that the absolute error approach in particular is competitive with common change-point methods using classical tuning parameter choices when error distributions are well-specified, but can substantially outperform these in misspecified models. An implementation of our methodology is available in the R package crossvalidationCP on CRAN.
This paper introduces the application of the weak Galerkin (WG) finite element method to solve the Steklov eigenvalue problem, focusing on obtaining lower bounds of the eigenvalues. The noncomforming finite element space of the weak Galerkin finite element method is the key to obtain lower bounds of the eigenvalues. The arbitary high order lower bound estimates are given and the guaranteed lower bounds of the eigenvalues are also discussed. Numerical results demonstrate the accuracy and lower bound property of the numerical scheme.
Diffusion models (DMs) are widely used for generating high-quality image datasets. However, since they operate directly in the high-dimensional pixel space, optimization of DMs is computationally expensive, requiring long training times. This contributes to large amounts of noise being injected into the differentially private learning process, due to the composability property of differential privacy. To address this challenge, we propose training Latent Diffusion Models (LDMs) with differential privacy. LDMs use powerful pre-trained autoencoders to reduce the high-dimensional pixel space to a much lower-dimensional latent space, making training DMs more efficient and fast. Unlike [Ghalebikesabi et al., 2023] that pre-trains DMs with public data then fine-tunes them with private data, we fine-tune only the attention modules of LDMs at varying layers with privacy-sensitive data, reducing the number of trainable parameters by approximately 96% compared to fine-tuning the entire DM. We test our algorithm on several public-private data pairs, such as ImageNet as public data and CIFAR10 and CelebA as private data, and SVHN as public data and MNIST as private data. Our approach provides a promising direction for training more powerful, yet training-efficient differentially private DMs that can produce high-quality synthetic images.
We design replicable algorithms in the context of statistical clustering under the recently introduced notion of replicability from Impagliazzo et al. [2022]. According to this definition, a clustering algorithm is replicable if, with high probability, its output induces the exact same partition of the sample space after two executions on different inputs drawn from the same distribution, when its internal randomness is shared across the executions. We propose such algorithms for the statistical $k$-medians, statistical $k$-means, and statistical $k$-centers problems by utilizing approximation routines for their combinatorial counterparts in a black-box manner. In particular, we demonstrate a replicable $O(1)$-approximation algorithm for statistical Euclidean $k$-medians ($k$-means) with $\operatorname{poly}(d)$ sample complexity. We also describe an $O(1)$-approximation algorithm with an additional $O(1)$-additive error for statistical Euclidean $k$-centers, albeit with $\exp(d)$ sample complexity. In addition, we provide experiments on synthetic distributions in 2D using the $k$-means++ implementation from sklearn as a black-box that validate our theoretical results.
Decision trees are interpretable models that are well-suited to non-linear learning problems. Much work has been done on extending decision tree learning algorithms with differential privacy, a system that guarantees the privacy of samples within the training data. However, current state-of-the-art algorithms for this purpose sacrifice much utility for a small privacy benefit. These solutions create random decision nodes that reduce decision tree accuracy or spend an excessive share of the privacy budget on labeling leaves. Moreover, many works do not support or leak information about feature values when data is continuous. We propose a new method called PrivaTree based on private histograms that chooses good splits while consuming a small privacy budget. The resulting trees provide a significantly better privacy-utility trade-off and accept mixed numerical and categorical data without leaking additional information. Finally, while it is notoriously hard to give robustness guarantees against data poisoning attacks, we prove bounds for the expected success rates of backdoor attacks against differentially-private learners. Our experimental results show that PrivaTree consistently outperforms previous works on predictive accuracy and significantly improves robustness against backdoor attacks compared to regular decision trees.
Hierarchical Clustering is a popular unsupervised machine learning method with decades of history and numerous applications. We initiate the study of differentially private approximation algorithms for hierarchical clustering under the rigorous framework introduced by (Dasgupta, 2016). We show strong lower bounds for the problem: that any $\epsilon$-DP algorithm must exhibit $O(|V|^2/ \epsilon)$-additive error for an input dataset $V$. Then, we exhibit a polynomial-time approximation algorithm with $O(|V|^{2.5}/ \epsilon)$-additive error, and an exponential-time algorithm that meets the lower bound. To overcome the lower bound, we focus on the stochastic block model, a popular model of graphs, and, with a separation assumption on the blocks, propose a private $1+o(1)$ approximation algorithm which also recovers the blocks exactly. Finally, we perform an empirical study of our algorithms and validate their performance.