亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

When designing interventions in public health, development, and education, decision makers rely on social network data to target a small number of people, capitalizing on peer effects and social contagion to bring about the most welfare benefits to the population. Developing new methods that are privacy-preserving for network data collection and targeted interventions is critical for designing sustainable public health and development interventions on social networks. In a similar vein, social media platforms rely on network data and information from past diffusions to organize their ad campaign and improve the efficacy of targeted advertising. Ensuring that these network operations do not violate users' privacy is critical to the sustainability of social media platforms and their ad economies. We study privacy guarantees for influence maximization algorithms when the social network is unknown, and the inputs are samples of prior influence cascades that are collected at random. Building on recent results that address seeding with costly network information, our privacy-preserving algorithms introduce randomization in the collected data or the algorithm output, and can bound each node's (or group of nodes') privacy loss in deciding whether or not their data should be included in the algorithm input. We provide theoretical guarantees of the seeding performance with a limited sample size subject to differential privacy budgets in both central and local privacy regimes. Simulations on synthetic and empirical network datasets reveal the diminishing value of network information with decreasing privacy budget in both regimes.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

We train language models (LMs) with federated learning (FL) and differential privacy (DP) in the Google Keyboard (Gboard). We apply the DP-Follow-the-Regularized-Leader (DP-FTRL)~\citep{kairouz21b} algorithm to achieve meaningfully formal DP guarantees without requiring uniform sampling of client devices. To provide favorable privacy-utility trade-offs, we introduce a new client participation criterion and discuss the implication of its configuration in large scale systems. We show how quantile-based clip estimation~\citep{andrew2019differentially} can be combined with DP-FTRL to adaptively choose the clip norm during training or reduce the hyperparameter tuning in preparation for training. With the help of pretraining on public data, we train and deploy more than twenty Gboard LMs that achieve high utility and $\rho-$zCDP privacy guarantees with $\rho \in (0.2, 2)$, with two models additionally trained with secure aggregation~\citep{bonawitz2017practical}. We are happy to announce that all the next word prediction neural network LMs in Gboard now have DP guarantees, and all future launches of Gboard neural network LMs will require DP guarantees. We summarize our experience and provide concrete suggestions on DP training for practitioners.

This paper investigates the utility gain of using Iterative Bayesian Update (IBU) for private discrete distribution estimation using data obfuscated with Locally Differentially Private (LDP) mechanisms. We compare the performance of IBU to Matrix Inversion (MI), a standard estimation technique, for seven LDP mechanisms designed for one-time data collection and for other seven LDP mechanisms designed for multiple data collections (e.g., RAPPOR). To broaden the scope of our study, we also varied the utility metric, the number of users n, the domain size k, and the privacy parameter {\epsilon}, using both synthetic and real-world data. Our results suggest that IBU can be a useful post-processing tool for improving the utility of LDP mechanisms in different scenarios without any additional privacy cost. For instance, our experiments show that IBU can provide better utility than MI, especially in high privacy regimes (i.e., when {\epsilon} is small). Our paper provides insights for practitioners to use IBU in conjunction with existing LDP mechanisms for more accurate and privacy-preserving data analysis. Finally, we implemented IBU for all fourteen LDP mechanisms into the state-of-the-art multi-freq-ldpy Python package (//pypi.org/project/multi-freq-ldpy/) and open-sourced all our code used for the experiments as tutorials.

Fingerprinting arguments, first introduced by Bun, Ullman, and Vadhan (STOC 2014), are the most widely used method for establishing lower bounds on the sample complexity or error of approximately differentially private (DP) algorithms. Still, there are many problems in differential privacy for which we don't know suitable lower bounds, and even for problems that we do, the lower bounds are not smooth, and usually become vacuous when the error is larger than some threshold. In this work, we present a simple method to generate hard instances by applying a padding-and-permuting transformation to a fingerprinting code. We illustrate the applicability of this method by providing new lower bounds in various settings: 1. A tight lower bound for DP averaging in the low-accuracy regime, which in particular implies a new lower bound for the private 1-cluster problem introduced by Nissim, Stemmer, and Vadhan (PODS 2016). 2. A lower bound on the additive error of DP algorithms for approximate k-means clustering, as a function of the multiplicative error, which is tight for a constant multiplication error. 3. A lower bound for estimating the top singular vector of a matrix under DP in low-accuracy regimes, which is a special case of DP subspace estimation studied by Singhal and Steinke (NeurIPS 2021). Our main technique is to apply a padding-and-permuting transformation to a fingerprinting code. However, rather than proving our results using a black-box access to an existing fingerprinting code (e.g., Tardos' code), we develop a new fingerprinting lemma that is stronger than those of Dwork et al. (FOCS 2015) and Bun et al. (SODA 2017), and prove our lower bounds directly from the lemma. Our lemma, in particular, gives a simpler fingerprinting code construction with optimal rate (up to polylogarithmic factors) that is of independent interest.

The streaming model is an abstraction of computing over massive data streams, which is a popular way of dealing with large-scale modern data analysis. In this model, there is a stream of data points, one after the other. A streaming algorithm is only allowed one pass over the data stream, and the goal is to perform some analysis during the stream while using as small space as possible. Clustering problems (such as $k$-means and $k$-median) are fundamental unsupervised machine learning primitives, and streaming clustering algorithms have been extensively studied in the past. However, since data privacy becomes a central concern in many real-world applications, non-private clustering algorithms are not applicable in many scenarios. In this work, we provide the first differentially private streaming algorithms for $k$-means and $k$-median clustering of $d$-dimensional Euclidean data points over a stream with length at most $T$ using $poly(k,d,\log(T))$ space to achieve a {\it constant} multiplicative error and a $poly(k,d,\log(T))$ additive error. In particular, we present a differentially private streaming clustering framework which only requires an offline DP coreset algorithm as a blackbox. By plugging in existing DP coreset results via Ghazi, Kumar, Manurangsi 2020 and Kaplan, Stemmer 2018, we achieve (1) a $(1+\gamma)$-multiplicative approximation with $\tilde{O}_\gamma(poly(k,d,\log(T)))$ space for any $\gamma>0$, and the additive error is $poly(k,d,\log(T))$ or (2) an $O(1)$-multiplicative approximation with $\tilde{O}(k \cdot poly(d,\log(T)))$ space and $poly(k,d,\log(T))$ additive error. In addition, our algorithmic framework is also differentially private under the continual release setting, i.e., the union of outputs of our algorithms at every timestamp is always differentially private.

Modern machine learning algorithms aim to extract fine-grained information from data to provide accurate predictions, which often conflicts with the goal of privacy protection. This paper addresses the practical and theoretical importance of developing privacy-preserving machine learning algorithms that ensure good performance while preserving privacy. In this paper, we focus on the privacy and utility (measured by excess risk bounds) performances of differentially private stochastic gradient descent (SGD) algorithms in the setting of stochastic convex optimization. Specifically, we examine the pointwise problem in the low-noise setting for which we derive sharper excess risk bounds for the differentially private SGD algorithm. In the pairwise learning setting, we propose a simple differentially private SGD algorithm based on gradient perturbation. Furthermore, we develop novel utility bounds for the proposed algorithm, proving that it achieves optimal excess risk rates even for non-smooth losses. Notably, we establish fast learning rates for privacy-preserving pairwise learning under the low-noise condition, which is the first of its kind.

The proliferation of automated data collection schemes and the advances in sensorics are increasing the amount of data we are able to monitor in real-time. However, given the high annotation costs and the time required by quality inspections, data is often available in an unlabeled form. This is fostering the use of active learning for the development of soft sensors and predictive models. In production, instead of performing random inspections to obtain product information, labels are collected by evaluating the information content of the unlabeled data. Several query strategy frameworks for regression have been proposed in the literature but most of the focus has been dedicated to the static pool-based scenario. In this work, we propose a new strategy for the stream-based scenario, where instances are sequentially offered to the learner, which must instantaneously decide whether to perform the quality check to obtain the label or discard the instance. The approach is inspired by the optimal experimental design theory and the iterative aspect of the decision-making process is tackled by setting a threshold on the informativeness of the unlabeled data points. The proposed approach is evaluated using numerical simulations and the Tennessee Eastman Process simulator. The results confirm that selecting the examples suggested by the proposed algorithm allows for a faster reduction in the prediction error.

Although the NLP community has adopted central differential privacy as a go-to framework for privacy-preserving model training or data sharing, the choice and interpretation of the key parameter, privacy budget $\varepsilon$ that governs the strength of privacy protection, remains largely arbitrary. We argue that determining the $\varepsilon$ value should not be solely in the hands of researchers or system developers, but must also take into account the actual people who share their potentially sensitive data. In other words: Would you share your instant messages for $\varepsilon$ of 10? We address this research gap by designing, implementing, and conducting a behavioral experiment (311 lay participants) to study the behavior of people in uncertain decision-making situations with respect to privacy-threatening situations. Framing the risk perception in terms of two realistic NLP scenarios and using a vignette behavioral study help us determine what $\varepsilon$ thresholds would lead lay people to be willing to share sensitive textual data - to our knowledge, the first study of its kind.

Synthetic data has been hailed as the silver bullet for privacy preserving data analysis. If a record is not real, then how could it violate a person's privacy? In addition, deep-learning based generative models are employed successfully to approximate complex high-dimensional distributions from data and draw realistic samples from this learned distribution. It is often overlooked though that generative models are prone to memorising many details of individual training records and often generate synthetic data that too closely resembles the underlying sensitive training data, hence violating strong privacy regulations as, e.g., encountered in health care. Differential privacy is the well-known state-of-the-art framework for guaranteeing protection of sensitive individuals' data, allowing aggregate statistics and even machine learning models to be released publicly without compromising privacy. The training mechanisms however often add too much noise during the training process, and thus severely compromise the utility of these private models. Even worse, the tight privacy budgets do not allow for many training epochs so that model quality cannot be properly controlled in practice. In this paper we explore an alternative approach for privately generating data that makes direct use of the inherent stochasticity in generative models, e.g., variational autoencoders. The main idea is to appropriately constrain the continuity modulus of the deep models instead of adding another noise mechanism on top. For this approach, we derive mathematically rigorous privacy guarantees and illustrate its effectiveness with practical experiments.

Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.

To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

北京阿比特科技有限公司