亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-camera 3D object detection for autonomous driving is a challenging problem that has garnered notable attention from both academia and industry. An obstacle encountered in vision-based techniques involves the precise extraction of geometry-conscious features from RGB images. Recent approaches have utilized geometric-aware image backbones pretrained on depth-relevant tasks to acquire spatial information. However, these approaches overlook the critical aspect of view transformation, resulting in inadequate performance due to the misalignment of spatial knowledge between the image backbone and view transformation. To address this issue, we propose a novel geometric-aware pretraining framework called GAPretrain. Our approach incorporates spatial and structural cues to camera networks by employing the geometric-rich modality as guidance during the pretraining phase. The transference of modal-specific attributes across different modalities is non-trivial, but we bridge this gap by using a unified bird's-eye-view (BEV) representation and structural hints derived from LiDAR point clouds to facilitate the pretraining process. GAPretrain serves as a plug-and-play solution that can be flexibly applied to multiple state-of-the-art detectors. Our experiments demonstrate the effectiveness and generalization ability of the proposed method. We achieve 46.2 mAP and 55.5 NDS on the nuScenes val set using the BEVFormer method, with a gain of 2.7 and 2.1 points, respectively. We also conduct experiments on various image backbones and view transformations to validate the efficacy of our approach. Code will be released at //github.com/OpenDriveLab/BEVPerception-Survey-Recipe.

相關內容

Mainstream 3D representation learning approaches are built upon contrastive or generative modeling pretext tasks, where great improvements in performance on various downstream tasks have been achieved. However, we find these two paradigms have different characteristics: (i) contrastive models are data-hungry that suffer from a representation over-fitting issue; (ii) generative models have a data filling issue that shows inferior data scaling capacity compared to contrastive models. This motivates us to learn 3D representations by sharing the merits of both paradigms, which is non-trivial due to the pattern difference between the two paradigms. In this paper, we propose Contrast with Reconstruct (ReCon) that unifies these two paradigms. ReCon is trained to learn from both generative modeling teachers and single/cross-modal contrastive teachers through ensemble distillation, where the generative student guides the contrastive student. An encoder-decoder style ReCon-block is proposed that transfers knowledge through cross attention with stop-gradient, which avoids pretraining over-fitting and pattern difference issues. ReCon achieves a new state-of-the-art in 3D representation learning, e.g., 91.26% accuracy on ScanObjectNN. Codes have been released at //github.com/qizekun/ReCon.

Diffusion models have emerged as the best approach for generative modeling of 2D images. Part of their success is due to the possibility of training them on millions if not billions of images with a stable learning objective. However, extending these models to 3D remains difficult for two reasons. First, finding a large quantity of 3D training data is much more complex than for 2D images. Second, while it is conceptually trivial to extend the models to operate on 3D rather than 2D grids, the associated cubic growth in memory and compute complexity makes this infeasible. We address the first challenge by introducing a new diffusion setup that can be trained, end-to-end, with only posed 2D images for supervision; and the second challenge by proposing an image formation model that decouples model memory from spatial memory. We evaluate our method on real-world data, using the CO3D dataset which has not been used to train 3D generative models before. We show that our diffusion models are scalable, train robustly, and are competitive in terms of sample quality and fidelity to existing approaches for 3D generative modeling.

Egocentric temporal action segmentation in videos is a crucial task in computer vision with applications in various fields such as mixed reality, human behavior analysis, and robotics. Although recent research has utilized advanced visual-language frameworks, transformers remain the backbone of action segmentation models. Therefore, it is necessary to improve transformers to enhance the robustness of action segmentation models. In this work, we propose two novel ideas to enhance the state-of-the-art transformer for action segmentation. First, we introduce a dual dilated attention mechanism to adaptively capture hierarchical representations in both local-to-global and global-to-local contexts. Second, we incorporate cross-connections between the encoder and decoder blocks to prevent the loss of local context by the decoder. Additionally, we utilize state-of-the-art visual-language representation learning techniques to extract richer and more compact features for our transformer. Our proposed approach outperforms other state-of-the-art methods on the Georgia Tech Egocentric Activities (GTEA) and HOI4D Office Tools datasets, and we validate our introduced components with ablation studies. The source code and supplementary materials are publicly available on //www.sail-nu.com/dxformer.

Heatmap-based anatomical landmark detection is still facing two unresolved challenges: 1) inability to accurately evaluate the distribution of heatmap; 2) inability to effectively exploit global spatial structure information. To address the computational inability challenge, we propose a novel position-aware and sample-aware central loss. Specifically, our central loss can absorb position information, enabling accurate evaluation of the heatmap distribution. More advanced is that our central loss is sample-aware, which can adaptively distinguish easy and hard samples and make the model more focused on hard samples while solving the challenge of extreme imbalance between landmarks and non-landmarks. To address the challenge of ignoring structure information, a Coordinated Transformer, called CoorTransformer, is proposed, which establishes long-range dependencies under the guidance of landmark coordination information, making the attention more focused on the sparse landmarks while taking advantage of global spatial structure. Furthermore, CoorTransformer can speed up convergence, effectively avoiding the defect that Transformers have difficulty converging in sparse representation learning. Using the advanced CoorTransformer and central loss, we propose a generalized detection model that can handle various scenarios, inherently exploiting the underlying relationship between landmarks and incorporating rich structural knowledge around the target landmarks. We analyzed and evaluated CoorTransformer and central loss on three challenging landmark detection tasks. The experimental results show that our CoorTransformer outperforms state-of-the-art methods, and the central loss significantly improves the performance of the model with p-values< 0.05.

3D object detection plays a crucial role in numerous intelligent vision systems. Detection in the open world inevitably encounters various adverse scenes, such as dense fog, heavy rain, and low light conditions. Although existing efforts primarily focus on diversifying network architecture or training schemes, resulting in significant progress in 3D object detection, most of these learnable modules fail in adverse scenes, thereby hindering detection performance. To address this issue, this paper proposes a monocular 3D detection model designed to perceive twin depth in adverse scenes, termed MonoTDP, which effectively mitigates the degradation of detection performance in various harsh environments. Specifically, we first introduce an adaptive learning strategy to aid the model in handling uncontrollable weather conditions, significantly resisting degradation caused by various degrading factors. Then, to address the depth/content loss in adverse regions, we propose a novel twin depth perception module that simultaneously estimates scene and object depth, enabling the integration of scene-level features and object-level features. Additionally, we assemble a new adverse 3D object detection dataset encompassing a wide range of challenging scenes, including rainy, foggy, and low light weather conditions, with each type of scene containing 7,481 images. Experimental results demonstrate that our proposed method outperforms current state-of-the-art approaches by an average of 3.12% in terms of AP_R40 for car category across various adverse environments.

Recently, speech separation (SS) task has achieved remarkable progress driven by deep learning technique. However, it is still challenging to separate target signals from noisy mixture, as neural model is vulnerable to assign background noise to each speaker. In this paper, we propose a noise-aware SS method called NASS, which aims to improve the speech quality of separated signals in noisy conditions. Specifically, NASS views background noise as an independent speaker and predicts it with other speakers in a mask-based manner. Then we conduct patch-wise contrastive learning on feature level to minimize the mutual information between the predicted noise-speaker and other speakers, which suppresses the noise information in separated signals. The experimental results show that NASS effectively improves the noise-robustness for different mask-based separation backbones with less than 0.1M parameter increase. Furthermore, SI-SNRi results demonstrate that NASS achieves state-of-the-art performance on WHAM! dataset.

With the rise of deep convolutional neural networks, object detection has achieved prominent advances in past years. However, such prosperity could not camouflage the unsatisfactory situation of Small Object Detection (SOD), one of the notoriously challenging tasks in computer vision, owing to the poor visual appearance and noisy representation caused by the intrinsic structure of small targets. In addition, large-scale dataset for benchmarking small object detection methods remains a bottleneck. In this paper, we first conduct a thorough review of small object detection. Then, to catalyze the development of SOD, we construct two large-scale Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively. SODA-D includes 24704 high-quality traffic images and 277596 instances of 9 categories. For SODA-A, we harvest 2510 high-resolution aerial images and annotate 800203 instances over 9 classes. The proposed datasets, as we know, are the first-ever attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances tailored for multi-category SOD. Finally, we evaluate the performance of mainstream methods on SODA. We expect the released benchmarks could facilitate the development of SOD and spawn more breakthroughs in this field. Datasets and codes will be available soon at: \url{//shaunyuan22.github.io/SODA}.

The cyber-threat landscape has evolved tremendously in recent years, with new threat variants emerging daily, and large-scale coordinated campaigns becoming more prevalent. In this study, we propose CELEST (CollaborativE LEarning for Scalable Threat detection), a federated machine learning framework for global threat detection over HTTP, which is one of the most commonly used protocols for malware dissemination and communication. CELEST leverages federated learning in order to collaboratively train a global model across multiple clients who keep their data locally, thus providing increased privacy and confidentiality assurances. Through a novel active learning component integrated with the federated learning technique, our system continuously discovers and learns the behavior of new, evolving, and globally-coordinated cyber threats. We show that CELEST is able to expose attacks that are largely invisible to individual organizations. For instance, in one challenging attack scenario with data exfiltration malware, the global model achieves a three-fold increase in Precision-Recall AUC compared to the local model. We deploy CELEST on two university networks and show that it is able to detect the malicious HTTP communication with high precision and low false positive rates. Furthermore, during its deployment, CELEST detected a set of previously unknown 42 malicious URLs and 20 malicious domains in one day, which were confirmed to be malicious by VirusTotal.

Human-centric perception plays a vital role in vision and graphics. But their data annotations are prohibitively expensive. Therefore, it is desirable to have a versatile pre-train model that serves as a foundation for data-efficient downstream tasks transfer. To this end, we propose the Human-Centric Multi-Modal Contrastive Learning framework HCMoCo that leverages the multi-modal nature of human data (e.g. RGB, depth, 2D keypoints) for effective representation learning. The objective comes with two main challenges: dense pre-train for multi-modality data, efficient usage of sparse human priors. To tackle the challenges, we design the novel Dense Intra-sample Contrastive Learning and Sparse Structure-aware Contrastive Learning targets by hierarchically learning a modal-invariant latent space featured with continuous and ordinal feature distribution and structure-aware semantic consistency. HCMoCo provides pre-train for different modalities by combining heterogeneous datasets, which allows efficient usage of existing task-specific human data. Extensive experiments on four downstream tasks of different modalities demonstrate the effectiveness of HCMoCo, especially under data-efficient settings (7.16% and 12% improvement on DensePose Estimation and Human Parsing). Moreover, we demonstrate the versatility of HCMoCo by exploring cross-modality supervision and missing-modality inference, validating its strong ability in cross-modal association and reasoning.

Object detection with transformers (DETR) reaches competitive performance with Faster R-CNN via a transformer encoder-decoder architecture. Inspired by the great success of pre-training transformers in natural language processing, we propose a pretext task named random query patch detection to unsupervisedly pre-train DETR (UP-DETR) for object detection. Specifically, we randomly crop patches from the given image and then feed them as queries to the decoder. The model is pre-trained to detect these query patches from the original image. During the pre-training, we address two critical issues: multi-task learning and multi-query localization. (1) To trade-off multi-task learning of classification and localization in the pretext task, we freeze the CNN backbone and propose a patch feature reconstruction branch which is jointly optimized with patch detection. (2) To perform multi-query localization, we introduce UP-DETR from single-query patch and extend it to multi-query patches with object query shuffle and attention mask. In our experiments, UP-DETR significantly boosts the performance of DETR with faster convergence and higher precision on PASCAL VOC and COCO datasets. The code will be available soon.

北京阿比特科技有限公司