亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Social cognitive theory explains how people learn and acquire knowledge through observing others. Recent years have witnessed the rapid development of large language models (LLMs), which suggests their potential significance as agents in the society. LLMs, as AI agents, can observe external information, which shapes their cognition and behaviors. However, the extent to which external information influences LLMs' cognition and behaviors remains unclear. This study investigates how external statements and opinions influence LLMs' thoughts and behaviors from a social cognitive perspective. Three experiments were conducted to explore the effects of external information on LLMs' memories, opinions, and social media behavioral decisions. Sociocognitive factors, including source authority, social identity, and social role, were analyzed to investigate their moderating effects. Results showed that external information can significantly shape LLMs' memories, opinions, and behaviors, with these changes mirroring human social cognitive patterns such as authority bias, in-group bias, emotional positivity, and emotion contagion. This underscores the challenges in developing safe and unbiased LLMs, and emphasizes the importance of understanding the susceptibility of LLMs to external influences.

相關內容

Cognition:Cognition:International Journal of Cognitive Science Explanation:認知:國際認知科學雜志。 Publisher:Elsevier。 SIT:

Automated decision systems are increasingly used to make consequential decisions in people's lives. Due to the sensitivity of the manipulated data as well as the resulting decisions, several ethical concerns need to be addressed for the appropriate use of such technologies, in particular, fairness and privacy. Unlike previous work, which focused on centralized differential privacy (DP) or local DP (LDP) for a single sensitive attribute, in this paper, we examine the impact of LDP in the presence of several sensitive attributes (i.e., multi-dimensional data) on fairness. Detailed empirical analysis on synthetic and benchmark datasets revealed very relevant observations. In particular, (1) multi-dimensional LDP is an efficient approach to reduce disparity, (2) the multi-dimensional approach of LDP (independent vs. combined) matters only at low privacy guarantees, and (3) the outcome Y distribution has an important effect on which group is more sensitive to the obfuscation. Last, we summarize our findings in the form of recommendations to guide practitioners in adopting effective privacy-preserving practices while maintaining fairness and utility in ML applications.

Infants' ability to recognize and categorize objects develops gradually. The second year of life is marked by both the emergence of more semantic visual representations and a better understanding of word meaning. This suggests that language input may play an important role in shaping visual representations. However, even in suitable contexts for word learning like dyadic play sessions, caregivers utterances are sparse and ambiguous, often referring to objects that are different from the one to which the child attends. Here, we systematically investigate to what extent caregivers' utterances can nevertheless enhance visual representations. For this we propose a computational model of visual representation learning during dyadic play. We introduce a synthetic dataset of ego-centric images perceived by a toddler-agent that moves and rotates toy objects in different parts of its home environment while hearing caregivers' utterances, modeled as captions. We propose to model toddlers' learning as simultaneously aligning representations for 1) close-in-time images and 2) co-occurring images and utterances. We show that utterances with statistics matching those of real caregivers give rise to representations supporting improved category recognition. Our analysis reveals that a small decrease/increase in object-relevant naming frequencies can drastically impact the learned representations. This affects the attention on object names within an utterance, which is required for efficient visuo-linguistic alignment. Overall, our results support the hypothesis that caregivers' naming utterances can improve toddlers' visual representations.

As governments race to implement new climate adaptation policies that prepare for more frequent flooding, they must seek policies that are effective for all communities and uphold climate justice. This requires evaluating policies not only on their overall effectiveness but also on whether their benefits are felt across all communities. We illustrate the importance of considering such disparities for flood adaptation using the FEMA National Flood Insurance Program Community Rating System and its dataset of $\sim$2.5 million flood insurance claims. We use ${\rm C{\scriptsize AUSAL}F{\scriptsize LOW}}$, a causal inference method based on deep generative models, to estimate the treatment effect of flood adaptation interventions based on a community's income, diversity, population, flood risk, educational attainment, and precipitation. We find that the program saves communities \$5,000--15,000 per household. However, these savings are not evenly spread across communities. For example, for low-income communities savings sharply decline as flood-risk increases in contrast to their high-income counterparts with all else equal. Even among low-income communities, there is a gap in savings between predominantly white and non-white communities: savings of predominantly white communities can be higher by more than \$6000 per household. As communities worldwide ramp up efforts to reduce losses inflicted by floods, simply prescribing a series flood adaptation measures is not enough. Programs must provide communities with the necessary technical and economic support to compensate for historical patterns of disenfranchisement, racism, and inequality. Future flood adaptation efforts should go beyond reducing losses overall and aim to close existing gaps to equitably support communities in the race for climate adaptation.

Social media networks have become a significant aspect of people's lives, serving as a platform for their ideas, opinions and emotions. Consequently, automated sentiment analysis (SA) is critical for recognising people's feelings in ways that other information sources cannot. The analysis of these feelings revealed various applications, including brand evaluations, YouTube film reviews and healthcare applications. As social media continues to develop, people post a massive amount of information in different forms, including text, photos, audio and video. Thus, traditional SA algorithms have become limited, as they do not consider the expressiveness of other modalities. By including such characteristics from various material sources, these multimodal data streams provide new opportunities for optimising the expected results beyond text-based SA. Our study focuses on the forefront field of multimodal SA, which examines visual and textual data posted on social media networks. Many people are more likely to utilise this information to express themselves on these platforms. To serve as a resource for academics in this rapidly growing field, we introduce a comprehensive overview of textual and visual SA, including data pre-processing, feature extraction techniques, sentiment benchmark datasets, and the efficacy of multiple classification methodologies suited to each field. We also provide a brief introduction of the most frequently utilised data fusion strategies and a summary of existing research on visual-textual SA. Finally, we highlight the most significant challenges and investigate several important sentiment applications.

We investigate pseudopolynomial-time algorithms for Bounded Knapsack and Bounded Subset Sum. Recent years have seen a growing interest in settling their fine-grained complexity with respect to various parameters. For Bounded Knapsack, the number of items $n$ and the maximum item weight $w_{\max}$ are two of the most natural parameters that have been studied extensively in the literature. The previous best running time in terms of $n$ and $w_{\max}$ is $O(n + w^3_{\max})$ [Polak, Rohwedder, Wegrzycki '21]. There is a conditional lower bound of $O((n + w_{\max})^{2-o(1)})$ based on $(\min,+)$-convolution hypothesis [Cygan, Mucha, Wegrzycki, Wlodarczyk '17]. We narrow the gap significantly by proposing a $\tilde{O}(n + w^{12/5}_{\max})$-time algorithm. Note that in the regime where $w_{\max} \approx n$, our algorithm runs in $\tilde{O}(n^{12/5})$ time, while all the previous algorithms require $\Omega(n^3)$ time in the worst case. For Bounded Subset Sum, we give two algorithms running in $\tilde{O}(nw_{\max})$ and $\tilde{O}(n + w^{3/2}_{\max})$ time, respectively. These results match the currently best running time for 0-1 Subset Sum. Prior to our work, the best running times (in terms of $n$ and $w_{\max}$) for Bounded Subset Sum is $\tilde{O}(n + w^{5/3}_{\max})$ [Polak, Rohwedder, Wegrzycki '21] and $\tilde{O}(n + \mu_{\max}^{1/2}w_{\max}^{3/2})$ [implied by Bringmann '19 and Bringmann, Wellnitz '21], where $\mu_{\max}$ refers to the maximum multiplicity of item weights.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

The era of big data provides researchers with convenient access to copious data. However, people often have little knowledge about it. The increasing prevalence of big data is challenging the traditional methods of learning causality because they are developed for the cases with limited amount of data and solid prior causal knowledge. This survey aims to close the gap between big data and learning causality with a comprehensive and structured review of traditional and frontier methods and a discussion about some open problems of learning causality. We begin with preliminaries of learning causality. Then we categorize and revisit methods of learning causality for the typical problems and data types. After that, we discuss the connections between learning causality and machine learning. At the end, some open problems are presented to show the great potential of learning causality with data.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

北京阿比特科技有限公司