亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Open Radio Access Network (RAN) was introduced recently to incorporate intelligence and openness into the upcoming generation of RAN. Open RAN offers standardized interfaces and the capacity to accommodate network applications from external vendors through extensible applications (xApps), which enhance network management flexibility. The Near-Real-Time Radio Intelligent Controller (Near-RT-RIC) employs specialized and intelligent xApps for achieving time-critical optimization objectives, but conflicts may arise due to different vendors' xApps modifying the same parameters or indirectly affecting each others' performance. A standardized Conflict Management System (CMS) is absent in most of the popular Open RAN architectures including the most prominent O-RAN Alliance architecture. To address this, we propose a CMS with independent controllers for conflict detection and mitigation between xApps in the Near-RT-RIC. We utilize cooperative bargain game theory, including Nash Social Welfare Function (NSWF) and the Equal Gains (EG) solution, to find optimal configurations for conflicting parameters. Experimental results demonstrate the effectiveness of the proposed Conflict Management Controller (CMC) in balancing conflicting parameters and mitigating adverse impacts in the Near-RT-RIC on a theoretical example scenario.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Large Language Models (LLMs) have achieved remarkable results in the machine translation evaluation task, yet there remains a gap in knowledge regarding how they utilize the provided data to conduct evaluations. This study aims to explore how LLMs leverage source and reference information in evaluating translations, with the ultimate goal of better understanding the working mechanism of LLMs. To this end, we design the controlled experiments across various input modes and model types, and employ both coarse-grained and fine-grained prompts to discern the utility of source versus reference information. Surprisingly, we find that reference information significantly enhances the evaluation accuracy, while source information sometimes is counterproductive, indicating a lack of cross-lingual capability when using LLMs to evaluate translations. We further conduct a meta-evaluation for translation error detection of LLMs, observing a similar phenomenon. These findings also suggest a potential research direction for LLMs that fully exploits the cross-lingual capability of LLMs to achieve better performance in machine translation evaluation tasks.

The Model Parameter Randomisation Test (MPRT) is widely acknowledged in the eXplainable Artificial Intelligence (XAI) community for its well-motivated evaluative principle: that the explanation function should be sensitive to changes in the parameters of the model function. However, recent works have identified several methodological caveats for the empirical interpretation of MPRT. To address these caveats, we introduce two adaptations to the original MPRT -- Smooth MPRT and Efficient MPRT, where the former minimises the impact that noise has on the evaluation results through sampling and the latter circumvents the need for biased similarity measurements by re-interpreting the test through the explanation's rise in complexity, after full parameter randomisation. Our experimental results demonstrate that these proposed variants lead to improved metric reliability, thus enabling a more trustworthy application of XAI methods.

Visual Speech Recognition (VSR) is the task of predicting spoken words from silent lip movements. VSR is regarded as a challenging task because of the insufficient information on lip movements. In this paper, we propose an Audio Knowledge empowered Visual Speech Recognition framework (AKVSR) to complement the insufficient speech information of visual modality by using audio modality. Different from the previous methods, the proposed AKVSR 1) utilizes rich audio knowledge encoded by a large-scale pretrained audio model, 2) saves the linguistic information of audio knowledge in compact audio memory by discarding the non-linguistic information from the audio through quantization, and 3) includes Audio Bridging Module which can find the best-matched audio features from the compact audio memory, which makes our training possible without audio inputs, once after the compact audio memory is composed. We validate the effectiveness of the proposed method through extensive experiments, and achieve new state-of-the-art performances on the widely-used LRS3 dataset.

Reinforcement Learning from Human Feedback (RLHF) has become a crucial technology for aligning language models with human values and intentions, enabling models to produce more helpful and harmless responses. Reward models are trained as proxies for human preferences to drive reinforcement learning optimization. While reward models are often considered central to achieving high performance, they face the following challenges in practical applications: (1) Incorrect and ambiguous preference pairs in the dataset may hinder the reward model from accurately capturing human intent. (2) Reward models trained on data from a specific distribution often struggle to generalize to examples outside that distribution and are not suitable for iterative RLHF training. In this report, we attempt to address these two issues. (1) From a data perspective, we propose a method to measure the strength of preferences within the data, based on a voting mechanism of multiple reward models. Experimental results confirm that data with varying preference strengths have different impacts on reward model performance. We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset and fully leverage high-quality preference data. (2) From an algorithmic standpoint, we introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses, thereby improving model generalization. Furthermore, we employ meta-learning to enable the reward model to maintain the ability to differentiate subtle differences in out-of-distribution samples, and this approach can be utilized for iterative RLHF optimization.

Although Large Language Models (LLMs) have established pre-dominance in automated code generation, they are not devoid of shortcomings. The pertinent issues primarily relate to the absence of execution guarantees for generated code, a lack of explainability, and suboptimal support for essential but niche programming languages. State-of-the-art LLMs such as GPT-4 and LLaMa2 fail to produce valid programs for Industrial Control Systems (ICS) operated by Programmable Logic Controllers (PLCs). We propose LLM4PLC, a user-guided iterative pipeline leveraging user feedback and external verification tools including grammar checkers, compilers and SMV verifiers to guide the LLM's generation. We further enhance the generation potential of LLM by employing Prompt Engineering and model fine-tuning through the creation and usage of LoRAs. We validate this system using a FischerTechnik Manufacturing TestBed (MFTB), illustrating how LLMs can evolve from generating structurally flawed code to producing verifiably correct programs for industrial applications. We run a complete test suite on GPT-3.5, GPT-4, Code Llama-7B, a fine-tuned Code Llama-7B model, Code Llama-34B, and a fine-tuned Code Llama-34B model. The proposed pipeline improved the generation success rate from 47% to 72%, and the Survey-of-Experts code quality from 2.25/10 to 7.75/10. To promote open research, we share the complete experimental setup, the LLM Fine-Tuning Weights, and the video demonstrations of the different programs on our dedicated webpage.

Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Commonsense knowledge and commonsense reasoning are some of the main bottlenecks in machine intelligence. In the NLP community, many benchmark datasets and tasks have been created to address commonsense reasoning for language understanding. These tasks are designed to assess machines' ability to acquire and learn commonsense knowledge in order to reason and understand natural language text. As these tasks become instrumental and a driving force for commonsense research, this paper aims to provide an overview of existing tasks and benchmarks, knowledge resources, and learning and inference approaches toward commonsense reasoning for natural language understanding. Through this, our goal is to support a better understanding of the state of the art, its limitations, and future challenges.

北京阿比特科技有限公司