亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, Conformer as a backbone network for end-to-end automatic speech recognition achieved state-of-the-art performance. The Conformer block leverages a self-attention mechanism to capture global information, along with a convolutional neural network to capture local information, resulting in improved performance. However, the Conformer-based model encounters an issue with the self-attention mechanism, as computational complexity grows quadratically with the length of the input sequence. Inspired by previous Connectionist Temporal Classification (CTC) guided blank skipping during decoding, we introduce intermediate CTC outputs as guidance into the downsampling procedure of the Conformer encoder. We define the frame with non-blank output as key frame. Specifically, we introduce the key frame-based self-attention (KFSA) mechanism, a novel method to reduce the computation of the self-attention mechanism using key frames. The structure of our proposed approach comprises two encoders. Following the initial encoder, we introduce an intermediate CTC loss function to compute the label frame, enabling us to extract the key frames and blank frames for KFSA. Furthermore, we introduce the key frame-based downsampling (KFDS) mechanism to operate on high-dimensional acoustic features directly and drop the frames corresponding to blank labels, which results in new acoustic feature sequences as input to the second encoder. By using the proposed method, which achieves comparable or higher performance than vanilla Conformer and other similar work such as Efficient Conformer. Meantime, our proposed method can discard more than 60\% useless frames during model training and inference, which will accelerate the inference speed significantly. This work code is available in {//github.com/scufan1990/Key-Frame-Mechanism-For-Efficient-Conformer}

相關內容

Visual Place Recognition (VPR) is a critical task for performing global re-localization in visual perception systems. It requires the ability to accurately recognize a previously visited location under variations such as illumination, occlusion, appearance and viewpoint. In the case of robotic systems and augmented reality, the target devices for deployment are battery powered edge devices. Therefore whilst the accuracy of VPR methods is important so too is memory consumption and latency. Recently new works have focused on the recall@1 metric as a performance measure with limited focus on resource utilization. This has resulted in methods that use deep learning models too large to deploy on low powered edge devices. We hypothesize that these large models are highly over-parameterized and can be optimized to satisfy the constraints of a low powered embedded system whilst maintaining high recall performance. Our work studies the impact of compact convolutional network architecture design in combination with full-precision and mixed-precision post-training quantization on VPR performance. Importantly we not only measure performance via the recall@1 score but also measure memory consumption and latency. We characterize the design implications on memory, latency and recall scores and provide a number of design recommendations for VPR systems under these resource limitations.

We observe a change in the way users access information, that is, the rise of conversational information access (CIA) agents. However, the automatic evaluation of these agents remains an open challenge. Moreover, the training of CIA agents is cumbersome as it mostly relies on conversational corpora, expert knowledge, and reinforcement learning. User simulation has been identified as a promising solution to tackle automatic evaluation and has been previously used in reinforcement learning. In this research, we investigate how user simulation can be leveraged in the context of CIA. We organize the work in three parts. We begin with the identification of requirements for user simulators for training and evaluating CIA agents and compare existing types of simulator regarding these. Then, we plan to combine these different types of simulators into a new hybrid simulator. Finally, we aim to extend simulators to handle more complex information seeking scenarios.

Real-world stereo image super-resolution has a significant influence on enhancing the performance of computer vision systems. Although existing methods for single-image super-resolution can be applied to improve stereo images, these methods often introduce notable modifications to the inherent disparity, resulting in a loss in the consistency of disparity between the original and the enhanced stereo images. To overcome this limitation, this paper proposes a novel approach that integrates a implicit stereo information discriminator and a hybrid degradation model. This combination ensures effective enhancement while preserving disparity consistency. The proposed method bridges the gap between the complex degradations in real-world stereo domain and the simpler degradations in real-world single-image super-resolution domain. Our results demonstrate impressive performance on synthetic and real datasets, enhancing visual perception while maintaining disparity consistency. The complete code is available at the following \href{//github.com/fzuzyb/SCGLANet}{link}.

The rapid development of the Large Language Model (LLM) presents huge opportunities for 6G communications, e.g., network optimization and management by allowing users to input task requirements to LLMs by nature language. However, directly applying native LLMs in 6G encounters various challenges, such as a lack of private communication data and knowledge, limited logical reasoning, evaluation, and refinement abilities. Integrating LLMs with the capabilities of retrieval, planning, memory, evaluation and reflection in agents can greatly enhance the potential of LLMs for 6G communications. To this end, we propose a multi-agent system with customized communication knowledge and tools for solving communication related tasks using natural language, comprising three components: (1) Multi-agent Data Retrieval (MDR), which employs the condensate and inference agents to refine and summarize communication knowledge from the knowledge base, expanding the knowledge boundaries of LLMs in 6G communications; (2) Multi-agent Collaborative Planning (MCP), which utilizes multiple planning agents to generate feasible solutions for the communication related task from different perspectives based on the retrieved knowledge; (3) Multi-agent Evaluation and Reflecxion (MER), which utilizes the evaluation agent to assess the solutions, and applies the reflexion agent and refinement agent to provide improvement suggestions for current solutions. Finally, we validate the effectiveness of the proposed multi-agent system by designing a semantic communication system, as a case study of 6G communications.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

This work aims to provide an engagement decision support tool for Beyond Visual Range (BVR) air combat in the context of Defensive Counter Air (DCA) missions. In BVR air combat, engagement decision refers to the choice of the moment the pilot engages a target by assuming an offensive stance and executing corresponding maneuvers. To model this decision, we use the Brazilian Air Force's Aerospace Simulation Environment (\textit{Ambiente de Simula\c{c}\~ao Aeroespacial - ASA} in Portuguese), which generated 3,729 constructive simulations lasting 12 minutes each and a total of 10,316 engagements. We analyzed all samples by an operational metric called the DCA index, which represents, based on the experience of subject matter experts, the degree of success in this type of mission. This metric considers the distances of the aircraft of the same team and the opposite team, the point of Combat Air Patrol, and the number of missiles used. By defining the engagement status right before it starts and the average of the DCA index throughout the engagement, we create a supervised learning model to determine the quality of a new engagement. An algorithm based on decision trees, working with the XGBoost library, provides a regression model to predict the DCA index with a coefficient of determination close to 0.8 and a Root Mean Square Error of 0.05 that can furnish parameters to the BVR pilot to decide whether or not to engage. Thus, using data obtained through simulations, this work contributes by building a decision support system based on machine learning for BVR air combat.

Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.

Medical image segmentation requires consensus ground truth segmentations to be derived from multiple expert annotations. A novel approach is proposed that obtains consensus segmentations from experts using graph cuts (GC) and semi supervised learning (SSL). Popular approaches use iterative Expectation Maximization (EM) to estimate the final annotation and quantify annotator's performance. Such techniques pose the risk of getting trapped in local minima. We propose a self consistency (SC) score to quantify annotator consistency using low level image features. SSL is used to predict missing annotations by considering global features and local image consistency. The SC score also serves as the penalty cost in a second order Markov random field (MRF) cost function optimized using graph cuts to derive the final consensus label. Graph cut obtains a global maximum without an iterative procedure. Experimental results on synthetic images, real data of Crohn's disease patients and retinal images show our final segmentation to be accurate and more consistent than competing methods.

北京阿比特科技有限公司