The fragility index is a clinically motivated metric designed to supplement the $p$ value during hypothesis testing. The measure relies on two pillars: selecting cases to have their outcome modified and modifying the outcomes. The measure is interesting but the case selection suffers from a drawback which can hamper its interpretation. This work presents the drawback and a method, the stochastic generalized fragility indices, designed to remedy it. Two examples concerning electoral outcomes and the causal effect of smoking cessation illustrate the method.
In recent years, with the rapid growth of Internet data, the number and types of scientific and technological resources are also rapidly expanding. However, the increase in the number and category of information data will also increase the cost of information acquisition. For technology-based enterprises or users, in addition to general papers, patents, etc., policies related to technology or the development of their industries should also belong to a type of scientific and technological resources. The cost and difficulty of acquiring users. Extracting valuable science and technology policy resources from a huge amount of data with mixed contents and providing accurate and fast retrieval will help to break down information barriers and reduce the cost of information acquisition, which has profound social significance and social utility. This article focuses on the difficulties and problems in the field of science and technology policy, and introduces related technologies and developments.
Community detection refers to the problem of clustering the nodes of a network into groups. Existing inferential methods for community structure mainly focus on unweighted (binary) networks. Many real-world networks are nonetheless weighted and a common practice is to dichotomize a weighted network to an unweighted one which is known to result in information loss. Literature on hypothesis testing in the latter situation is still missing. In this paper, we study the problem of testing the existence of community structure in weighted networks. Our contributions are threefold: (a). We use the (possibly infinite-dimensional) exponential family to model the weights and derive the sharp information-theoretic limit for the existence of consistent test. Within the limit, any test is inconsistent; and beyond the limit, we propose a useful consistent test. (b). Based on the information-theoretic limits, we provide the first formal way to quantify the loss of information incurred by dichotomizing weighted graphs into unweighted graphs in the context of hypothesis testing. (c). We propose several new and practically useful test statistics. Simulation study show that the proposed tests have good performance. Finally, we apply the proposed tests to an animal social network.
Linear mixed models (LMMs) are instrumental for regression analysis with structured dependence, such as grouped, clustered, or multilevel data. However, selection among the covariates--while accounting for this structured dependence--remains a challenge. We introduce a Bayesian decision analysis for subset selection with LMMs. Using a Mahalanobis loss function that incorporates the structured dependence, we derive optimal linear coefficients for (i) any given subset of variables and (ii) all subsets of variables that satisfy a cardinality constraint. Crucially, these estimates inherit shrinkage or regularization and uncertainty quantification from the underlying Bayesian model, and apply for any well-specified Bayesian LMM. More broadly, our decision analysis strategy deemphasizes the role of a single "best" subset, which is often unstable and limited in its information content, and instead favors a collection of near-optimal subsets. This collection is summarized by key member subsets and variable-specific importance metrics. Customized subset search and out-of-sample approximation algorithms are provided for more scalable computing. These tools are applied to simulated data and a longitudinal physical activity dataset, and demonstrate excellent prediction, estimation, and selection ability.
Conductivity imaging represents one of the most important tasks in medical imaging. In this work we develop a neural network based reconstruction technique for imaging the conductivity from the magnitude of the internal current density. It is achieved by formulating the problem as a relaxed weighted least-gradient problem, and then approximating its minimizer by standard fully connected feedforward neural networks. We derive bounds on two components of the generalization error, i.e., approximation error and statistical error, explicitly in terms of properties of the neural networks (e.g., depth, total number of parameters, and the bound of the network parameters). We illustrate the performance and distinct features of the approach on several numerical experiments. Numerically, it is observed that the approach enjoys remarkable robustness with respect to the presence of data noise.
We study the problem of testing whether a function $f: \mathbb{R}^n \to \mathbb{R}$ is a polynomial of degree at most $d$ in the \emph{distribution-free} testing model. Here, the distance between functions is measured with respect to an unknown distribution $\mathcal{D}$ over $\mathbb{R}^n$ from which we can draw samples. In contrast to previous work, we do not assume that $\mathcal{D}$ has finite support. We design a tester that given query access to $f$, and sample access to $\mathcal{D}$, makes $(d/\varepsilon)^{O(1)}$ many queries to $f$, accepts with probability $1$ if $f$ is a polynomial of degree $d$, and rejects with probability at least $2/3$ if every degree-$d$ polynomial $P$ disagrees with $f$ on a set of mass at least $\varepsilon$ with respect to $\mathcal{D}$. Our result also holds under mild assumptions when we receive only a polynomial number of bits of precision for each query to $f$, or when $f$ can only be queried on rational points representable using a logarithmic number of bits. Along the way, we prove a new stability theorem for multivariate polynomials that may be of independent interest.
We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems, which we call dynamical dimension reduction (DDR). In the DDR model, each point is evolved via a nonlinear flow towards a lower-dimensional subspace; the projection onto the subspace gives the low-dimensional embedding. Training the model involves identifying the nonlinear flow and the subspace. Following the equation discovery method, we represent the vector field that defines the flow using a linear combination of dictionary elements, where each element is a pre-specified linear/nonlinear candidate function. A regularization term for the average total kinetic energy is also introduced and motivated by optimal transport theory. We prove that the resulting optimization problem is well-posed and establish several properties of the DDR method. We also show how the DDR method can be trained using a gradient-based optimization method, where the gradients are computed using the adjoint method from optimal control theory. The DDR method is implemented and compared on synthetic and example datasets to other dimension reductions methods, including PCA, t-SNE, and Umap.
Functional magnetic resonance imaging (fMRI) is a non-invasive and in-vivo imaging technique essential for measuring brain activity. Functional connectivity is used to study associations between brain regions either at rest or while study subjects perform tasks. In this paper, we propose a rigorous definition of task-evoked functional connectivity at the population level (ptFC). Importantly, our proposed ptFC is interpretable in the context of task-fMRI studies. An algorithm for estimating ptFC is provided. We present the performance of the proposed algorithm compared to existing functional connectivity estimation approaches using simulations. Lastly, we apply the proposed framework to estimate task-evoked functional connectivity in a motor-task study from the Human Connectome Project.
It is shown, with two sets of indicators that separately load on two distinct factors, independent of one another conditional on the past, that if it is the case that at least one of the factors causally affects the other, then, in many settings, the process will converge to a factor model in which a single factor will suffice to capture the covariance structure among the indicators. Factor analysis with one wave of data can then not distinguish between factor models with a single factor versus those with two factors that are causally related. Therefore, unless causal relations between factors can be ruled out a priori, alleged empirical evidence from one-wave factor analysis for a single factor still leaves open the possibilities of a single factor or of two factors that causally affect one another. The implications for interpreting the factor structure of psychological scales, such as self-report scales for anxiety and depression, or for happiness and purpose, are discussed. The results are further illustrated through simulations to gain insight into the practical implications of the results in more realistic settings prior to the convergence of the processes. Some further generalizations to an arbitrary number of underlying factors are noted.
The performance of a quantum information processing protocol is ultimately judged by distinguishability measures that quantify how distinguishable the actual result of the protocol is from the ideal case. The most prominent distinguishability measures are those based on the fidelity and trace distance, due to their physical interpretations. In this paper, we propose and review several algorithms for estimating distinguishability measures based on trace distance and fidelity. The algorithms can be used for distinguishing quantum states, channels, and strategies (the last also known in the literature as "quantum combs"). The fidelity-based algorithms offer novel physical interpretations of these distinguishability measures in terms of the maximum probability with which a single prover (or competing provers) can convince a verifier to accept the outcome of an associated computation. We simulate many of these algorithms by using a variational approach with parameterized quantum circuits. We find that the simulations converge well in both the noiseless and noisy scenarios, for all examples considered. Furthermore, the noisy simulations exhibit a parameter noise resilience.
We recall some of the history of the information-theoretic approach to deriving core results in probability theory and indicate parts of the recent resurgence of interest in this area with current progress along several interesting directions. Then we give a new information-theoretic proof of a finite version of de Finetti's classical representation theorem for finite-valued random variables. We derive an upper bound on the relative entropy between the distribution of the first $k$ in a sequence of $n$ exchangeable random variables, and an appropriate mixture over product distributions. The mixing measure is characterised as the law of the empirical measure of the original sequence, and de Finetti's result is recovered as a corollary. The proof is nicely motivated by the Gibbs conditioning principle in connection with statistical mechanics, and it follows along an appealing sequence of steps. The technical estimates required for these steps are obtained via the use of a collection of combinatorial tools known within information theory as `the method of types.'