This paper is concerned with the inverse problem of constructing a symmetric nonnegative matrix from realizable spectrum. We reformulate the inverse problem as an underdetermined nonlinear matrix equation over a Riemannian product manifold. To solve it, we develop a Riemannian underdetermined inexact Newton dogleg method for solving a general underdetermined nonlinear equation defined between Riemannian manifolds and Euclidean spaces. The global and quadratic convergence of the proposed method is established under some mild assumptions. Then we solve the inverse problem by applying the proposed method to its equivalent nonlinear matrix equation and a preconditioner for the perturbed normal Riemannian Newton equation is also constructed. Numerical tests show the efficiency of the proposed method for solving the inverse problem.
We prove 2-categorical conservativity for any {0,T}-free fragment of MALL over its corresponding intuitionistic version: that is, that the universal map from a closed symmetric monoidal category to the *-autonomous category that it freely generates is fully faithful, and similarly for other doctrines. This implies that linear logics and graphical calculi for *-autonomous categories can also be interpreted canonically in closed symmetric monoidal categories. In particular, every closed symmetric monoidal category can be fully embedded in a *-autonomous category, preserving both tensor products and internal-homs. In fact, we prove this directly first with a Yoneda-style embedding (an enhanced "Hyland envelope" that can be regarded as a polycategorical form of Day convolution), and deduce 2-conservativity afterwards from Hyland-Schalk double gluing and a technique of Lafont. The same is true for other fragments of *-autonomous structure, such as linear distributivity, and the embedding can be enhanced to preserve any desired family of nonempty limits and colimits.
This paper studies optimal motion planning subject to motion and environment uncertainties. By modeling the system as a probabilistic labeled Markov decision process (PL-MDP), the control objective is to synthesize a finite-memory policy, under which the agent satisfies complex high-level tasks expressed as linear temporal logic (LTL) with desired satisfaction probability. In particular, the cost optimization of the trajectory that satisfies infinite horizon tasks is considered, and the trade-off between reducing the expected mean cost and maximizing the probability of task satisfaction is analyzed. Instead of using traditional Rabin automata, the LTL formulas are converted to limit-deterministic B\"uchi automata (LDBA) with a reachability acceptance condition and a compact graph structure. The novelty of this work lies in considering the cases where LTL specifications can be potentially infeasible and developing a relaxed product MDP between PL-MDP and LDBA. The relaxed product MDP allows the agent to revise its motion plan whenever the task is not fully feasible and quantify the revised plan's violation measurement. A multi-objective optimization problem is then formulated to jointly consider the probability of task satisfaction, the violation with respect to original task constraints, and the implementation cost of the policy execution. The formulated problem can be solved via coupled linear programs. To the best of our knowledge, this work first bridges the gap between probabilistic planning revision of potential infeasible LTL specifications and optimal control synthesis of both plan prefix and plan suffix of the trajectory over the infinite horizons. Experimental results are provided to demonstrate the effectiveness of the proposed framework.
Trimming consists of cutting away parts of a geometric domain, without reconstructing a global parametrization (meshing). It is a widely used operation in computer aided design, which generates meshes that are unfitted with the described physical object. This paper develops an adaptive mesh refinement strategy on trimmed geometries in the context of hierarchical B-spline based isogeometric analysis. A residual a posteriori estimator of the energy norm of the numerical approximation error is derived, in the context of Poisson equation. The reliability of the estimator is proven, and the effectivity index is shown to be independent from the number of hierarchical levels and from the way the trimmed boundaries cut the underlying mesh. In particular, it is thus independent from the size of the active part of the trimmed mesh elements. Numerical experiments are performed to validate the presented theory.
Permutation polynomials over finite fields are an interesting and constantly active research subject of study for many years. They have important applications in areas of mathematics and engineering. In recent years, permutation binomials and permutation trinomials attract people's interests due to their simple algebraic forms. By reversely using Tu's method for the characterization of permutation polynomials with exponents of Niho type, we construct a class of permutation trinomials with coefficients 1 in this paper. As applications, two conjectures of [19] and a conjecture of [13] are all special cases of our result. To our knowledge, the construction method of permutation polynomials by polar decomposition in this paper is new. Moreover, we prove that in new class of permutation trinomials, there exists a permutation polynomial which is EA-inequivalent to known permutation polynomials for all m greater than or equal to 2. Also we give the explicit compositional inverses of the new permutation trinomials for a special case.
In this paper, we propose a novel method for solving high-dimensional spectral fractional Laplacian equations. Using the Caffarelli-Silvestre extension, the $d$-dimensional spectral fractional equation is reformulated as a regular partial differential equation of dimension $d+1$. We transform the extended equation as a minimal Ritz energy functional problem and search for its minimizer in a special class of deep neural networks. Moreover, based on the approximation property of networks, we establish estimates on the error made by the deep Ritz method. Numerical results are reported to demonstrate the effectiveness of the proposed method for solving fractional Laplacian equations up to ten dimensions. Technically, in this method, we design a special network-based structure to adapt to the singularity and exponential decaying of the true solution. Also, A hybrid integration technique combining Monte Carlo method and sinc quadrature is developed to compute the loss function with higher accuracy.
Let $Q_{n}^{r}$ be the graph with vertex set $\{-1,1\}^{n}$ in which two vertices are joined if their Hamming distance is at most $r$. The edge-isoperimetric problem for $Q_{n}^{r}$ is that: For every $(n,r,M)$ such that $1\le r\le n$ and $1\le M\le2^{n}$, determine the minimum edge-boundary size of a subset of vertices of $Q_{n}^{r}$ with a given size $M$. In this paper, we apply two different approaches to prove bounds for this problem. The first approach is a linear programming approach and the second is a probabilistic approach. Our bound derived by the first approach generalizes the tight bound for $M=2^{n-1}$ derived by Kahn, Kalai, and Linial in 1989. Moreover, our bound is also tight for $M=2^{n-2}$ and $r\le\frac{n}{2}-1$. Our bounds derived by the second approach are expressed in terms of the \emph{noise stability}, and they are shown to be asymptotically tight as $n\to\infty$ when $r=2\lfloor\frac{\beta n}{2}\rfloor+1$ and $M=\lfloor\alpha2^{n}\rfloor$ for fixed $\alpha,\beta\in(0,1)$, and is tight up to a factor $2$ when $r=2\lfloor\frac{\beta n}{2}\rfloor$ and $M=\lfloor\alpha2^{n}\rfloor$. In fact, the edge-isoperimetric problem is equivalent to a ball-noise stability problem which is a variant of the traditional (i.i.d.-) noise stability problem. Our results can be interpreted as bounds for the ball-noise stability problem.
A unified construction of div-conforming finite element tensors, including vector div element, symmetric div matrix element, traceless div matrix element, and in general tensors with constraints, is developed in this work. It is based on the geometric decomposition of Lagrange elements into bubble functions on each sub-simplex. Then the tensor at each sub-simplex is decomposed into the tangential and the normal component. The tangential component forms the bubble function space and the normal component characterizes the trace. A deep exploration on boundary degrees of freedom is presented for discovering various finite elements. The developed finite element spaces are div conforming and satisfy the discrete inf-sup condition. An explicit basis of the constraint tensor space is also established.
We present self-supervised geometric perception (SGP), the first general framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels (e.g., camera poses, rigid transformations). Our first contribution is to formulate geometric perception as an optimization problem that jointly optimizes the feature descriptor and the geometric models given a large corpus of visual measurements (e.g., images, point clouds). Under this optimization formulation, we show that two important streams of research in vision, namely robust model fitting and deep feature learning, correspond to optimizing one block of the unknown variables while fixing the other block. This analysis naturally leads to our second contribution -- the SGP algorithm that performs alternating minimization to solve the joint optimization. SGP iteratively executes two meta-algorithms: a teacher that performs robust model fitting given learned features to generate geometric pseudo-labels, and a student that performs deep feature learning under noisy supervision of the pseudo-labels. As a third contribution, we apply SGP to two perception problems on large-scale real datasets, namely relative camera pose estimation on MegaDepth and point cloud registration on 3DMatch. We demonstrate that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.
This work focuses on combining nonparametric topic models with Auto-Encoding Variational Bayes (AEVB). Specifically, we first propose iTM-VAE, where the topics are treated as trainable parameters and the document-specific topic proportions are obtained by a stick-breaking construction. The inference of iTM-VAE is modeled by neural networks such that it can be computed in a simple feed-forward manner. We also describe how to introduce a hyper-prior into iTM-VAE so as to model the uncertainty of the prior parameter. Actually, the hyper-prior technique is quite general and we show that it can be applied to other AEVB based models to alleviate the {\it collapse-to-prior} problem elegantly. Moreover, we also propose HiTM-VAE, where the document-specific topic distributions are generated in a hierarchical manner. HiTM-VAE is even more flexible and can generate topic distributions with better variability. Experimental results on 20News and Reuters RCV1-V2 datasets show that the proposed models outperform the state-of-the-art baselines significantly. The advantages of the hyper-prior technique and the hierarchical model construction are also confirmed by experiments.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.