亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Optimal values and solutions of empirical approximations of stochastic optimization problems can be viewed as statistical estimators of their true values. From this perspective, it is important to understand the asymptotic behavior of these estimators as the sample size goes to infinity. This area of study has a long tradition in stochastic programming. However, the literature is lacking consistency analysis for problems in which the decision variables are taken from an infinite dimensional space, which arise in optimal control, scientific machine learning, and statistical estimation. By exploiting the typical problem structures found in these applications that give rise to hidden norm compactness properties for solution sets, we prove consistency results for nonconvex risk-averse stochastic optimization problems formulated in infinite dimensional space. The proof is based on several crucial results from the theory of variational convergence. The theoretical results are demonstrated for several important problem classes arising in the literature.

相關內容

In topology optimization of compliant mechanisms, the specific placement of boundary conditions strongly affects the resulting material distribution and performance of the design. At the same time, the most effective locations of the loads and supports are often difficult to find manually. This substantially limits topology optimization's effectiveness for many mechanism design problems. We remove this limitation by developing a method which automatically determines optimal positioning of a prescribed input displacement and a set of supports simultaneously with an optimal material layout. Using nonlinear elastic physics, we synthesize a variety of compliant mechanisms with large output displacements, snap-through responses, and prescribed output paths, producing designs with significantly improved performance in every case tested. Compared to optimal designs generated using best-guess boundary conditions used in previous studies, the mechanisms presented in this paper see performance increases ranging from 23%-430%. The results show that nonlinear mechanism responses may be particularly sensitive to boundary condition locations and that effective placements can be difficult to find without an automated method.

Psychological trait estimation from external factors such as movement and appearance is a challenging and long-standing problem in psychology, and is principally based on the psychological theory of embodiment. To date, attempts to tackle this problem have utilized private small-scale datasets with intrusive body-attached sensors. Potential applications of an automated system for psychological trait estimation include estimation of occupational fatigue and psychology, and marketing and advertisement. In this work, we propose PsyMo (Psychological traits from Motion), a novel, multi-purpose and multi-modal dataset for exploring psychological cues manifested in walking patterns. We gathered walking sequences from 312 subjects in 7 different walking variations and 6 camera angles. In conjunction with walking sequences, participants filled in 6 psychological questionnaires, totalling 17 psychometric attributes related to personality, self-esteem, fatigue, aggressiveness and mental health. We propose two evaluation protocols for psychological trait estimation. Alongside the estimation of self-reported psychological traits from gait, the dataset can be used as a drop-in replacement to benchmark methods for gait recognition. We anonymize all cues related to the identity of the subjects and publicly release only silhouettes, 2D / 3D human skeletons and 3D SMPL human meshes.

We consider extensions of the Newton-MR algorithm for nonconvex optimization to the settings where Hessian information is approximated. Under additive noise model on the Hessian matrix, we investigate the iteration and operation complexities of these variants to achieve first and second-order sub-optimality criteria. We show that, under certain conditions, the algorithms achieve iteration and operation complexities that match those of the exact variant. Focusing on the particular nonconvex problems satisfying Polyak-\L ojasiewicz condition, we show that our algorithm achieves a linear convergence rate. We finally compare the performance of our algorithms with several alternatives on a few machine learning problems.

This paper studies the spatial manifestations of order reduction that occur when time-stepping initial-boundary-value problems (IBVPs) with high-order Runge-Kutta methods. For such IBVPs, geometric structures arise that do not have an analog in ODE IVPs: boundary layers appear, induced by a mismatch between the approximation error in the interior and at the boundaries. To understand those boundary layers, an analysis of the modes of the numerical scheme is conducted, which explains under which circumstances boundary layers persist over many time steps. Based on this, two remedies to order reduction are studied: first, a new condition on the Butcher tableau, called weak stage order, that is compatible with diagonally implicit Runge-Kutta schemes; and second, the impact of modified boundary conditions on the boundary layer theory is analyzed.

This work demonstrates the utility of gradients for the global optimization of certain differentiable functions with many suboptimal local minima. To this end, a principle for generating search directions from non-local quadratic approximants based on gradients of the objective function is analyzed. Experiments measure the quality of non-local search directions as well as the performance of a proposed simplistic algorithm, of the covariance matrix adaptation evolution strategy (CMA-ES), and of a randomly reinitialized Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.

Traditional geometric registration based estimation methods only exploit the CAD model implicitly, which leads to their dependence on observation quality and deficiency to occlusion. To address the problem,the paper proposes a bidirectional correspondence prediction network with a point-wise attention-aware mechanism. This network not only requires the model points to predict the correspondence but also explicitly models the geometric similarities between observations and the model prior. Our key insight is that the correlations between each model point and scene point provide essential information for learning point-pair matches. To further tackle the correlation noises brought by feature distribution divergence, we design a simple but effective pseudo-siamese network to improve feature homogeneity. Experimental results on the public datasets of LineMOD, YCB-Video, and Occ-LineMOD show that the proposed method achieves better performance than other state-of-the-art methods under the same evaluation criteria. Its robustness in estimating poses is greatly improved, especially in an environment with severe occlusions.

Linkage analysis has provided valuable insights to the GWAS studies, particularly in revealing that SNPs in linkage disequilibrium (LD) can jointly influence disease phenotypes. However, the potential of LD network data has often been overlooked or underutilized in the literature. In this paper, we propose a locally adaptive structure learning algorithm (LASLA) that provides a principled and generic framework for incorporating network data or multiple samples of auxiliary data from related source domains; possibly in different dimensions/structures and from diverse populations. LASLA employs a $p$-value weighting approach, utilizing structural insights to assign data-driven weights to individual test points. Theoretical analysis shows that LASLA can asymptotically control FDR with independent or weakly dependent primary statistics, and achieve higher power when the network data is informative. Efficiency again of LASLA is illustrated through various synthetic experiments and an application to T2D-associated SNP identification.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司