亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we consider the Fokker-Planck equation of the Nonlinear Noisy Leaky Integrate-and-Fire (NNLIF) model for neuron networks. Due to the firing events of neurons at the microscopic level, this Fokker-Planck equation contains dynamic boundary conditions involving specific internal points. To efficiently solve this problem and explore the properties of the unknown, we construct a flexible numerical scheme for the Fokker-Planck equation in the framework of spectral methods that can accurately handle the dynamic boundary condition. This numerical scheme is stable with suitable choices of test function spaces, and asymptotic preserving, and it is easily extendable to variant models with multiple time scales. We also present extensive numerical examples to verify the scheme properties, including order of convergence and time efficiency, and explore unique properties of the model, including blow-up phenomena for the NNLIF model and learning and discriminative properties for the NNLIF model with learning rules.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Extensibility · 模型評估 · 有向 · 穩健性 ·
2023 年 6 月 13 日

The design of particle simulation methods for collisional plasma physics has always represented a challenge due to the unbounded total collisional cross section, which prevents a natural extension of the classical Direct Simulation Monte Carlo (DSMC) method devised for the Boltzmann equation. One way to overcome this problem is to consider the design of Monte Carlo algorithms that are robust in the so-called grazing collision limit. In the first part of this manuscript, we will focus on the construction of collision algorithms for the Landau-Fokker-Planck equation based on the grazing collision asymptotics and which avoids the use of iterative solvers. Subsequently, we discuss problems involving uncertainties and show how to develop a stochastic Galerkin projection of the particle dynamics which permits to recover spectral accuracy for smooth solutions in the random space. Several classical numerical tests are reported to validate the present approach.

The Monge-Amp\`ere equation is a fully nonlinear partial differential equation (PDE) of fundamental importance in analysis, geometry and in the applied sciences. In this paper we solve the Dirichlet problem associated with the Monge-Amp\`ere equation using neural networks and we show that an ansatz using deep input convex neural networks can be used to find the unique convex solution. As part of our analysis we study the effect of singularities, discontinuities and noise in the source function, we consider nontrivial domains, and we investigate how the method performs in higher dimensions. We investigate the convergence numerically and present error estimates based on a stability result. We also compare this method to an alternative approach in which standard feed-forward networks are used together with a loss function which penalizes lack of convexity.

In this work we propose tailored model order reduction for varying boundary optimal control problems governed by parametric partial differential equations. With varying boundary control, we mean that a specific parameter changes where the boundary control acts on the system. This peculiar formulation might benefit from model order reduction. Indeed, fast and reliable simulations of this model can be of utmost usefulness in many applied fields, such as geophysics and energy engineering. However, varying boundary control features very complicated and diversified parametric behaviour for the state and adjoint variables. The state solution, for example, changing the boundary control parameter, might feature transport phenomena. Moreover, the problem loses its affine structure. It is well known that classical model order reduction techniques fail in this setting, both in accuracy and in efficiency. Thus, we propose reduced approaches inspired by the ones used when dealing with wave-like phenomena. Indeed, we compare standard proper orthogonal decomposition with two tailored strategies: geometric recasting and local proper orthogonal decomposition. Geometric recasting solves the optimization system in a reference domain simplifying the problem at hand avoiding hyper-reduction, while local proper orthogonal decomposition builds local bases to increase the accuracy of the reduced solution in very general settings (where geometric recasting is unfeasible). We compare the various approaches on two different numerical experiments based on geometries of increasing complexity.

The optimal implementation of federated learning (FL) in practical edge computing systems has been an outstanding problem. In this paper, we propose an optimization-based quantized FL algorithm, which can appropriately fit a general edge computing system with uniform or nonuniform computing and communication resources at the workers. Specifically, we first present a new random quantization scheme and analyze its properties. Then, we propose a general quantized FL algorithm, namely GQFedWAvg. Specifically, GQFedWAvg applies the proposed quantization scheme to quantize wisely chosen model update-related vectors and adopts a generalized mini-batch stochastic gradient descent (SGD) method with the weighted average local model updates in global model aggregation. Besides, GQFedWAvg has several adjustable algorithm parameters to flexibly adapt to the computing and communication resources at the server and workers. We also analyze the convergence of GQFedWAvg. Next, we optimize the algorithm parameters of GQFedWAvg to minimize the convergence error under the time and energy constraints. We successfully tackle the challenging non-convex problem using general inner approximation (GIA) and multiple delicate tricks. Finally, we interpret GQFedWAvg's function principle and show its considerable gains over existing FL algorithms using numerical results.

In this paper, we investigate the two-dimensional extension of a recently introduced set of shallow water models based on a regularized moment expansion of the incompressible Navier-Stokes equations \cite{kowalski2017moment,koellermeier2020analysis}. We show the rotational invariance of the proposed moment models with two different approaches. The first proof involves the split of the coefficient matrix into the conservative and non-conservative parts and prove the rotational invariance for each part, while the second one relies on the special block structure of the coefficient matrices. With the aid of rotational invariance, the analysis of the hyperbolicity for the moment model in 2D is reduced to the real diagonalizability of the coefficient matrix in 1D. Then we prove the real diagonalizability by deriving the analytical form of the characteristic polynomial. Furthermore, we extend the model to include a more general class of closure relations than the original model and establish that this set of general closure relations retain both rotational invariance and hyperbolicity.

Hybrid dynamical systems, i.e. systems that have both continuous and discrete states, are ubiquitous in engineering, but are difficult to work with due to their discontinuous transitions. For example, a robot leg is able to exert very little control effort while it is in the air compared to when it is on the ground. When the leg hits the ground, the penetrating velocity instantaneously collapses to zero. These instantaneous changes in dynamics and discontinuities (or jumps) in state make standard smooth tools for planning, estimation, control, and learning difficult for hybrid systems. One of the key tools for accounting for these jumps is called the saltation matrix. The saltation matrix is the sensitivity update when a hybrid jump occurs and has been used in a variety of fields including robotics, power circuits, and computational neuroscience. This paper presents an intuitive derivation of the saltation matrix and discusses what it captures, where it has been used in the past, how it is used for linear and quadratic forms, how it is computed for rigid body systems with unilateral constraints, and some of the structural properties of the saltation matrix in these cases.

Most existing studies on massive grant-free access, proposed to support massive machine-type communications (mMTC) for the Internet of things (IoT), assume Rayleigh fading and perfect synchronization for simplicity. However, in practice, line-of-sight (LoS) components generally exist, and time and frequency synchronization are usually imperfect. This paper systematically investigates maximum likelihood estimation (MLE)-based device activity detection under Rician fading for massive grant-free access with perfect and imperfect synchronization. Specifically, we formulate device activity detection in the synchronous case and joint device activity and offset detection in three asynchronous cases (i.e., time, frequency, and time and frequency asynchronous cases) as MLE problems. In the synchronous case, we propose an iterative algorithm to obtain a stationary point of the MLE problem. In each asynchronous case, we propose two iterative algorithms with identical detection performance but different computational complexities. In particular, one is computationally efficient for small ranges of offsets, whereas the other one, relying on fast Fourier transform (FFT) and inverse FFT, is computationally efficient for large ranges of offsets. The proposed algorithms generalize the existing MLE-based methods for Rayleigh fading and perfect synchronization. Numerical results show the notable gains of the proposed algorithms over existing methods in detection accuracy and computation time.

In this work, we aim at constructing numerical schemes, that are as efficient as possible in terms of cost and conservation of invariants, for the Vlasov--Fokker--Planck system coupled with Poisson or Amp\`ere equation. Splitting methods are used where the linear terms in space are treated by spectral or semi-Lagrangian methods and the nonlinear diffusion in velocity in the collision operator is treated using a stabilized Runge--Kutta--Chebyshev (RKC) integrator, a powerful alternative of implicit schemes. The new schemes are shown to exactly preserve mass and momentum. The conservation of total energy is obtained using a suitable approximation of the electric field. An H-theorem is proved in the semi-discrete case, while the entropy decay is illustrated numerically for the fully discretized problem. Numerical experiments that include investigation of Landau damping phenomenon and bump-on-tail instability are performed to illustrate the efficiency of the new schemes.

This paper presents a personalized graph federated learning (PGFL) framework in which distributedly connected servers and their respective edge devices collaboratively learn device or cluster-specific models while maintaining the privacy of every individual device. The proposed approach exploits similarities among different models to provide a more relevant experience for each device, even in situations with diverse data distributions and disproportionate datasets. Furthermore, to ensure a secure and efficient approach to collaborative personalized learning, we study a variant of the PGFL implementation that utilizes differential privacy, specifically zero-concentrated differential privacy, where a noise sequence perturbs model exchanges. Our mathematical analysis shows that the proposed privacy-preserving PGFL algorithm converges to the optimal cluster-specific solution for each cluster in linear time. It also shows that exploiting similarities among clusters leads to an alternative output whose distance to the original solution is bounded, and that this bound can be adjusted by modifying the algorithm's hyperparameters. Further, our analysis shows that the algorithm ensures local differential privacy for all clients in terms of zero-concentrated differential privacy. Finally, the performance of the proposed PGFL algorithm is examined by performing numerical experiments in the context of regression and classification using synthetic data and the MNIST dataset.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

北京阿比特科技有限公司