亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Current state of the art acoustic models can easily comprise more than 100 million parameters. This growing complexity demands larger training datasets to maintain a decent generalization of the final decision function. An ideal dataset is not necessarily large in size, but large with respect to the amount of unique speakers, utilized hardware and varying recording conditions. This enables a machine learning model to explore as much of the domain-specific input space as possible during parameter estimation. This work introduces Common Phone, a gender-balanced, multilingual corpus recorded from more than 76.000 contributors via Mozilla's Common Voice project. It comprises around 116 hours of speech enriched with automatically generated phonetic segmentation. A Wav2Vec 2.0 acoustic model was trained with the Common Phone to perform phonetic symbol recognition and validate the quality of the generated phonetic annotation. The architecture achieved a PER of 18.1 % on the entire test set, computed with all 101 unique phonetic symbols, showing slight differences between the individual languages. We conclude that Common Phone provides sufficient variability and reliable phonetic annotation to help bridging the gap between research and application of acoustic models.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Automator · 知識 (knowledge) · 條件隨機場 · 相似度 ·
2022 年 4 月 20 日

Online technical forums (e.g., StackOverflow) are popular platforms for developers to discuss technical problems such as how to use specific Application Programming Interface (API), how to solve the programming tasks, or how to fix bugs in their codes. These discussions can often provide auxiliary knowledge of how to use the software that is not covered by the official documents. The automatic extraction of such knowledge will support a set of downstream tasks like API searching or indexing. However, unlike official documentation written by experts, discussions in open forums are made by regular developers who write in short and informal texts, including spelling errors or abbreviations. There are three major challenges for the accurate APIs recognition and linking mentioned APIs from unstructured natural language documents to an entry in the API repository: (1) distinguishing API mentions from common words; (2) identifying API mentions without a fully qualified name; and (3) disambiguating API mentions with similar method names but in a different library. In this paper, to tackle these challenges, we propose an ARCLIN tool, which can effectively distinguish and link APIs without using human annotations. Specifically, we first design an API recognizer to automatically extract API mentions from natural language sentences by a Conditional Random Field (CRF) on the top of a Bi-directional Long Short-Term Memory (Bi-LSTM) module, then we apply a context-aware scoring mechanism to compute the mention-entry similarity for each entry in an API repository. Compared to previous approaches with heuristic rules, our proposed tool without manual inspection outperforms by 8% in a high-quality dataset Py-mention, which contains 558 mentions and 2,830 sentences from five popular Python libraries.

Neural memory enables fast adaptation to new tasks with just a few training samples. Existing memory models store features only from the single last layer, which does not generalize well in presence of a domain shift between training and test distributions. Rather than relying on a flat memory, we propose a hierarchical alternative that stores features at different semantic levels. We introduce a hierarchical prototype model, where each level of the prototype fetches corresponding information from the hierarchical memory. The model is endowed with the ability to flexibly rely on features at different semantic levels if the domain shift circumstances so demand. We meta-learn the model by a newly derived hierarchical variational inference framework, where hierarchical memory and prototypes are jointly optimized. To explore and exploit the importance of different semantic levels, we further propose to learn the weights associated with the prototype at each level in a data-driven way, which enables the model to adaptively choose the most generalizable features. We conduct thorough ablation studies to demonstrate the effectiveness of each component in our model. The new state-of-the-art performance on cross-domain and competitive performance on traditional few-shot classification further substantiates the benefit of hierarchical variational memory.

Women are influential online, especially in image-based social media such as Twitter and Instagram. However, many in the network environment contain gender discrimination and aggressive information, which magnify gender stereotypes and gender inequality. Therefore, the filtering of illegal content such as gender discrimination is essential to maintain a healthy social network environment. In this paper, we describe the system developed by our team for SemEval-2022 Task 5: Multimedia Automatic Misogyny Identification. More specifically, we introduce two novel system to analyze these posts: a multimodal multi-task learning architecture that combines Bertweet for text encoding with ResNet-18 for image representation, and a single-flow transformer structure which combines text embeddings from BERT-Embeddings and image embeddings from several different modules such as EfficientNet and ResNet. In this manner, we show that the information behind them can be properly revealed. Our approach achieves good performance on each of the two subtasks of the current competition, ranking 15th for Subtask A (0.746 macro F1-score), 11th for Subtask B (0.706 macro F1-score) while exceeding the official baseline results by high margins.

Multilingual language models were shown to allow for nontrivial transfer across scripts and languages. In this work, we study the structure of the internal representations that enable this transfer. We focus on the representation of gender distinctions as a practical case study, and examine the extent to which the gender concept is encoded in shared subspaces across different languages. Our analysis shows that gender representations consist of several prominent components that are shared across languages, alongside language-specific components. The existence of language-independent and language-specific components provides an explanation for an intriguing empirical observation we make: while gender classification transfers well across languages, interventions for gender removal, trained on a single language, do not transfer easily to others.

Large scale comparative research into municipal governance is often prohibitively difficult due to a lack of high-quality data. But, recent advances in speech-to-text algorithms and natural language processing has made it possible to more easily collect and analyze data about municipal governments. In this paper, we introduce an open-source platform, the Council Data Project (CDP), to curate novel datasets for research into municipal governance. The contribution of this work is two-fold: 1. We demonstrate that CDP, as an infrastructure, can be used to assemble reliable comparative data on municipal governance; 2. We provide exploratory analysis of three municipalities to show how CDP data can be used to gain insight into how municipal governments perform over time. We conclude by describing future directions for research on and with CDP such as the development of machine learning models for speaker annotation, outline generation, and named entity recognition for improved linked data.

Transformers are the most eminent architectures used for a vast range of Natural Language Processing tasks. These models are pre-trained over a large text corpus and are meant to serve state-of-the-art results over tasks like text classification. In this work, we conduct a comparative study between monolingual and multilingual BERT models. We focus on the Marathi language and evaluate the models on the datasets for hate speech detection, sentiment analysis and simple text classification in Marathi. We use standard multilingual models such as mBERT, indicBERT and xlm-RoBERTa and compare with MahaBERT, MahaALBERT and MahaRoBERTa, the monolingual models for Marathi. We further show that Marathi monolingual models outperform the multilingual BERT variants on five different downstream fine-tuning experiments. We also evaluate sentence embeddings from these models by freezing the BERT encoder layers. We show that monolingual MahaBERT based models provide rich representations as compared to sentence embeddings from multi-lingual counterparts. However, we observe that these embeddings are not generic enough and do not work well on out of domain social media datasets. We consider two Marathi hate speech datasets L3Cube-MahaHate, HASOC-2021, a Marathi sentiment classification dataset L3Cube-MahaSent, and Marathi Headline, Articles classification datasets.

Incorporating stronger syntactic biases into neural language models (LMs) is a long-standing goal, but research in this area often focuses on modeling English text, where constituent treebanks are readily available. Extending constituent tree-based LMs to the multilingual setting, where dependency treebanks are more common, is possible via dependency-to-constituency conversion methods. However, this raises the question of which tree formats are best for learning the model, and for which languages. We investigate this question by training recurrent neural network grammars (RNNGs) using various conversion methods, and evaluating them empirically in a multilingual setting. We examine the effect on LM performance across nine conversion methods and five languages through seven types of syntactic tests. On average, the performance of our best model represents a 19 \% increase in accuracy over the worst choice across all languages. Our best model shows the advantage over sequential/overparameterized LMs, suggesting the positive effect of syntax injection in a multilingual setting. Our experiments highlight the importance of choosing the right tree formalism, and provide insights into making an informed decision.

Language models (LMs) significantly improve the recognition accuracy of end-to-end (E2E) models on words rarely seen during training, when used in either the shallow fusion or the rescoring setups. In this work, we introduce LMs in the learning of hybrid autoregressive transducer (HAT) models in the discriminative training framework, to mitigate the training versus inference gap regarding the use of LMs. For the shallow fusion setup, we use LMs during both hypotheses generation and loss computation, and the LM-aware MWER-trained model achieves 10\% relative improvement over the model trained with standard MWER on voice search test sets containing rare words. For the rescoring setup, we learn a small neural module to generate per-token fusion weights in a data-dependent manner. This model achieves the same rescoring WER as regular MWER-trained model, but without the need for sweeping fusion weights.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.

北京阿比特科技有限公司