亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces a novel method leveraging bi-encoder-based detectors along with a comprehensive study comparing different out-of-distribution (OOD) detection methods in NLP using different feature extractors. The feature extraction stage employs popular methods such as Universal Sentence Encoder (USE), BERT, MPNET, and GLOVE to extract informative representations from textual data. The evaluation is conducted on several datasets, including CLINC150, ROSTD-Coarse, SNIPS, and YELLOW. Performance is assessed using metrics such as F1-Score, MCC, FPR@90, FPR@95, AUPR, an AUROC. The experimental results demonstrate that the proposed bi-encoder-based detectors outperform other methods, both those that require OOD labels in training and those that do not, across all datasets, showing great potential for OOD detection in NLP. The simplicity of the training process and the superior detection performance make them applicable to real-world scenarios. The presented methods and benchmarking metrics serve as a valuable resource for future research in OOD detection, enabling further advancements in this field. The code and implementation details can be found on our GitHub repository: //github.com/yellowmessenger/ood-detection.

相關內容

In this paper, we propose a novel end-to-end approach for solving the multi-goal path planning problem in obstacle environments. Our proposed model, called S&Reg, integrates multi-task learning networks with a TSP solver and a path planner to quickly compute a closed and feasible path visiting all goals. Specifically, the model first predicts promising regions that potentially contain the optimal paths connecting two goals as a segmentation task. Simultaneously, estimations for pairwise distances between goals are conducted as a regression task by the neural networks, while the results construct a symmetric weight matrix for the TSP solver. Leveraging the TSP result, the path planner efficiently explores feasible paths guided by promising regions. We extensively evaluate the S&Reg model through simulations and compare it with the other sampling-based algorithms. The results demonstrate that our proposed model achieves superior performance in respect of computation time and solution cost, making it an effective solution for multi-goal path planning in obstacle environments. The proposed approach has the potential to be extended to other sampling-based algorithms for multi-goal path planning.

This paper proposes a GNN-based method for exploiting semantics and local geometry to guide the identification of reliable pointcloud registration candidates. Semantic and morphological features of the environment serve as key reference points for registration, enabling accurate lidar-based pose estimation. Our novel lightweight static graph structure informs our attention-based keypoint node aggregation GNN network by identifying semantic instance-based relationships, acting as inductive bias to significantly reduce the computational burden of pointcloud registration. By connecting candidate nodes and exploiting cross-graph attention, we identify confidence scores for all potential registration correspondences, estimating the displacement between pointcloud scans. Our pipeline enables introspective analysis of the model's performance by correlating it with the individual contributions of local structures in the environment, providing valuable insights into the system's behaviour. We test our method on the KITTI odometry dataset, achieving competitive accuracy compared to benchmark methods and a higher track smoothness while relying on significantly fewer network parameters.

This paper presents a novel modular robot system that can self-reconfigure to achieve omnidirectional movements for collaborative object transportation. Each robotic module is equipped with a steerable omni-wheel for navigation and is shaped as a regular icositetragon with a permanent magnet installed on each corner for stable docking. After aggregating multiple modules and forming a structure that can cage a target object, we have developed an optimization-based method to compute the distribution of all wheels' heading directions, which enables efficient omnidirectional movements of the structure. By implementing a hierarchical controller on our prototyped system in both simulation and experiment, we validated the trajectory tracking performance of an individual module and a team of six modules in multiple navigation and collaborative object transportation settings. The results demonstrate that the proposed system can maintain a stable caging formation and achieve smooth transportation, indicating the effectiveness of our hardware and locomotion designs.

Our work presents a novel spectrum-inspired learning-based approach for generating clothing deformations with dynamic effects and personalized details. Existing methods in the field of clothing animation are limited to either static behavior or specific network models for individual garments, which hinders their applicability in real-world scenarios where diverse animated garments are required. Our proposed method overcomes these limitations by providing a unified framework that predicts dynamic behavior for different garments with arbitrary topology and looseness, resulting in versatile and realistic deformations. First, we observe that the problem of bias towards low frequency always hampers supervised learning and leads to overly smooth deformations. To address this issue, we introduce a frequency-control strategy from a spectral perspective that enhances the generation of high-frequency details of the deformation. In addition, to make the network highly generalizable and able to learn various clothing deformations effectively, we propose a spectral descriptor to achieve a generalized description of the global shape information. Building on the above strategies, we develop a dynamic clothing deformation estimator that integrates frequency-controllable attention mechanisms with long short-term memory. The estimator takes as input expressive features from garments and human bodies, allowing it to automatically output continuous deformations for diverse clothing types, independent of mesh topology or vertex count. Finally, we present a neural collision handling method to further enhance the realism of garments. Our experimental results demonstrate the effectiveness of our approach on a variety of free-swinging garments and its superiority over state-of-the-art methods.

This paper proposes an illumination-robust visual odometry (VO) system that incorporates both accelerated learning-based corner point algorithms and an extended line feature algorithm. To be robust to dynamic illumination, the proposed system employs the convolutional neural network (CNN) and graph neural network (GNN) to detect and match reliable and informative corner points. Then point feature matching results and the distribution of point and line features are utilized to match and triangulate lines. By accelerating CNN and GNN parts and optimizing the pipeline, the proposed system is able to run in real-time on low-power embedded platforms. The proposed VO was evaluated on several datasets with varying illumination conditions, and the results show that it outperforms other state-of-the-art VO systems in terms of accuracy and robustness. The open-source nature of the proposed system allows for easy implementation and customization by the research community, enabling further development and improvement of VO for various applications.

This paper investigates the multiple-input-multiple-output (MIMO) massive unsourced random access in an asynchronous orthogonal frequency division multiplexing (OFDM) system, with both timing and frequency offsets (TFO) and non-negligible user collisions. The proposed coding framework splits the data into two parts encoded by sparse regression code (SPARC) and low-density parity check (LDPC) code. Multistage orthogonal pilots are transmitted in the first part to reduce collision density. Unlike existing schemes requiring a quantization codebook with a large size for estimating TFO, we establish a \textit{graph-based channel reconstruction and collision resolution (GB-CR$^2$)} algorithm to iteratively reconstruct channels, resolve collisions, and compensate for TFO rotations on the formulated graph jointly among multiple stages. We further propose to leverage the geometric characteristics of signal constellations to correct TFO estimations. Exhaustive simulations demonstrate remarkable performance superiority in channel estimation and data recovery with substantial complexity reduction compared to state-of-the-art schemes.

Are current language models capable of deception and lie detection? We study this question by introducing a text-based game called $\textit{Hoodwinked}$, inspired by Mafia and Among Us. Players are locked in a house and must find a key to escape, but one player is tasked with killing the others. Each time a murder is committed, the surviving players have a natural language discussion then vote to banish one player from the game. We conduct experiments with agents controlled by GPT-3, GPT-3.5, and GPT-4 and find evidence of deception and lie detection capabilities. The killer often denies their crime and accuses others, leading to measurable effects on voting outcomes. More advanced models are more effective killers, outperforming smaller models in 18 of 24 pairwise comparisons. Secondary metrics provide evidence that this improvement is not mediated by different actions, but rather by stronger persuasive skills during discussions. To evaluate the ability of AI agents to deceive humans, we make this game publicly available at h //hoodwinked.ai/ .

We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of natural language understanding and generation tasks across several widely used benchmarks.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

北京阿比特科技有限公司